File size: 3,392 Bytes
fa63613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdf9f8
 
 
 
 
fa63613
b7a43fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80b76bc
b7a43fe
 
 
80b76bc
 
b7a43fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdf9f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
dataset_info:
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - ja
  splits:
  - name: test
    num_bytes: 190991
    num_examples: 2000
  - name: train
    num_bytes: 88348569
    num_examples: 1000000
  - name: validation
    num_bytes: 191411
    num_examples: 2000
  download_size: 64068812
  dataset_size: 88730971
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
license: unknown
language:
- en
- ja
pretty_name: OPUS-100
---

# Dataset Card for OPUS-100-en-ja

### Dataset Summary

This corpus is extracted from **[Helsinki-NLP/opus-100](https://huggingface.co/datasets/Helsinki-NLP/opus-100)**, with Japanese and English pairs.

### How to use

It is used in much the same way as **[Helsinki-NLP/opus-100](https://huggingface.co/datasets/Helsinki-NLP/opus-100)**. The only difference is that you do not have to specify the language.

```
from datasets import load_dataset
dataset = load_dataset("Hoshikuzu/opus-100-en-ja")
```
If data loading times are too long and boring, use Streaming.

```
from datasets import load_dataset
dataset = load_dataset("Hoshikuzu/opus-100-en-ja", streaming=True)
```

## Dataset Structure

### Data Instances

```
{
  'translation': {
    'en': 'Yeah, Vincent Hanna.',
    'ja': '- ラウール - ラウールに ヴィンセント・ハンナだ'
  }
}
```

### Data Fields

Translation dictionaries containing texts from languages 1 and 2.

### Data Splits

The dataset is split into training, development, and test portions. 

### Citation Information

Follow the instructions described in the Helsinki-NLP/opus-100 readme. The following is taken from Helsinki-NLP/opus-100:

If you use this corpus, please cite the paper:
```bibtex
@inproceedings{zhang-etal-2020-improving,
    title = "Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation",
    author = "Zhang, Biao  and
      Williams, Philip  and
      Titov, Ivan  and
      Sennrich, Rico",
    editor = "Jurafsky, Dan  and
      Chai, Joyce  and
      Schluter, Natalie  and
      Tetreault, Joel",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.acl-main.148",
    doi = "10.18653/v1/2020.acl-main.148",
    pages = "1628--1639",
}
```
and, please, also acknowledge OPUS:
```bibtex
@inproceedings{tiedemann-2012-parallel,
    title = "Parallel Data, Tools and Interfaces in {OPUS}",
    author = {Tiedemann, J{\"o}rg},
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Do{\u{g}}an, Mehmet U{\u{g}}ur  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
    month = may,
    year = "2012",
    address = "Istanbul, Turkey",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf",
    pages = "2214--2218",
}
```