# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """ted2020_tw_mt""" import csv import json import os import datasets # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {中文 Aya dataset}, author={Heng-Shiou Sheu }, year={2024} } """ # You can copy an official description _DESCRIPTION = """\ 是一個精心策劃的資料集,源自 CohereForAI 的綜合 Aya 集合,特別關注繁體中文資料。 此資料集聚合了 CohereForAI/aya_collection、CohereForAI/aya_dataset 和 CohereForAI/aya_evaluation_suite 中的內容, 過濾掉除中文內容之外的所有內容,包括繁體中文與簡體中文。 """ # TODO 請使用 MAC 讀取資料夾內容來做更新 _Subset_names = [ 'default' ] # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "https://huggingface.co/Heng666" _LICENSE = "apache-2.0" # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { "aya_collection": "https://huggingface.co/datasets/CohereForAI/aya_collection", "aya_dataset": "https://huggingface.co/datasets/CohereForAI/aya_dataset", "evaluation_suite": "https://huggingface.co/datasets/CohereForAI/aya_evaluation_suite" } class ChineseAyaDatasetConfig(datasets.BuilderConfig): """BuilderConfig for Chinese Aya""" def __init__(self, subset, **kwargs): super().__init__(**kwargs) """ Args: subset: subset, you want to load **kwargs: keyword arguments forwarded to super. """ self.subset = subset class ChineseAyaDatasetDataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIG_CLASS = ChineseAyaDatasetConfig BUILDER_CONFIGS = [ ChineseAyaDatasetConfig( name=subset, description=_DESCRIPTION, subset=subset ) for subset in _Subset_names ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "inputs": datasets.Value("string"), "targets": datasets.Value("string"), "language": datasets.Value("string"), "language_code": datasets.Value("string"), "annotation_type": datasets.Value("string"), "user_id": datasets.Value("string"), }), homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE ) def _split_generators(self, dl_manager): subset = self.config.subset files = {} train_path = os.path.join("train/", f"CohereForAI-{subset}-train.csv") files["train"] = train_path test_path = os.path.join("test", f"CohereForAI-{subset}-test.csv") files["test"] = test_path validation_path = os.path.join("validation", f"CohereForAI-{subset}-validation.csv") files["validation"] = validation_path try: data_dir = dl_manager.download_and_extract(files) except: files.pop("test") files.pop("validation") data_dir = dl_manager.download_and_extract(files) output = [] if "train" in files: train = datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir["train"] } ) output.append(train) if "test" in files: test = datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir["test"] } ) output.append(test) if "validation" in files: validation = datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": data_dir["validation"] } ) output.append(validation) return output # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as f: reader = csv.reader(f, delimiter=",", quotechar='"') for id_, row in enumerate(reader): if id_ == 0: continue yield id_, { "inputs": row[0], "targets": row[1], "language": row[2], "language_code": row[3], "annotation_type": row[4], "user_id": row[5], }