Datasets:
File size: 5,917 Bytes
ea154a8 bb07134 bda0860 a3d0415 ea154a8 bda0860 f3ccec3 bda0860 a3d0415 bda0860 36412c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
---
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
task_ids:
- sentiment-analysis
- sentiment-classification
- sentiment-scoring
- semantic-similarity-classification
- semantic-similarity-scoring
tags:
- sentiment analysis, Twitter, tweets
- sentiment
multilinguality:
- monolingual
- multilingual
size_categories:
- 100K<n<1M
language:
- hau
- ibo
- pcm
- yor
pretty_name: NaijaSenti
---
<p align="center">
<img src="https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/image/naijasenti_logo1.png", width="500">
--------------------------------------------------------------------------------
## Dataset Description
- **Homepage:** https://github.com/hausanlp/NaijaSenti
- **Repository:** [GitHub](https://github.com/hausanlp/NaijaSenti)
- **Paper:** [NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis](https://aclanthology.org/2022.lrec-1.63/)
- **Leaderboard:** N/A
- **Point of Contact:** [Shamsuddeen Hassan Muhammad]([email protected])
### Dataset Summary
NaijaSenti is the first large-scale human-annotated Twitter sentiment dataset for the four most widely spoken languages in Nigeria — Hausa, Igbo, Nigerian-Pidgin, and Yorùbá — consisting of around 30,000 annotated tweets per language, including a significant fraction of code-mixed tweets.
### Supported Tasks and Leaderboards
The NaijaSenti can be used for a wide range of sentiment analysis tasks in Nigerian languages, such as sentiment classification, sentiment intensity analysis, and emotion detection. This dataset is suitable for training and evaluating machine learning models for various NLP tasks related to sentiment analysis in African languages. It was part of the datasets that were used for [SemEval 2023 Task 12: Sentiment Analysis for African Languages](https://codalab.lisn.upsaclay.fr/competitions/7320).
### Languages
4 most spoken Nigerian languages
* Hausa (hau)
* Igbo (ibo)
* Nigerian Pidgin (pcm)
* Yoruba (yor)
## Dataset Structure
### Data Instances
For each instance, there is a string for the tweet and a string for the label. See the NaijaSenti [dataset viewer](https://huggingface.co/datasets/HausaNLP/NaijaSenti-Twitter/viewer/hau/train) to explore more examples.
```
{
"tweet": "string",
"label": "string"
}
```
### Data Fields
The data fields are:
```
tweet: a string feature.
label: a classification label, with possible values including positive, negative and neutral.
```
### Data Splits
The NaijaSenti dataset has 3 splits: train, validation, and test. Below are the statistics for Version 1.0.0 of the dataset.
| | hau | ibo | pcm | yor |
|---|---|---|---|---|
| train | 14,172 | 10,192 | 5,121 | 8,522 |
| dev | 2,677 | 1,841 | 1,281 | 2,090 |
| test | 5,303 | 3,682 | 4,154 | 4,515 |
| total | 22,152 | 15,715 | 10,556 | 15,127 |
### How to use it
```python
from datasets import load_dataset
# you can load specific languages (e.g., Hausa). This download train, validation and test sets.
ds = load_dataset("HausaNLP/NaijaSenti-Twitter", "hau")
# train set only
ds = load_dataset("HausaNLP/NaijaSenti-Twitter", "hau", split = "train")
# test set only
ds = load_dataset("HausaNLP/NaijaSenti-Twitter", "hau", split = "test")
# validation set only
ds = load_dataset("HausaNLP/NaijaSenti-Twitter", "hau", split = "validation")
```
## Dataset Creation
### Curation Rationale
NaijaSenti Version 1.0.0 aimed to be used sentiment analysis and other related task in Nigerian indigenous and creole languages - Hausa, Igbo, Nigerian Pidgin and Yoruba.
### Source Data
Twitter
### Personal and Sensitive Information
We anonymized the tweets by replacing all *@mentions* by *@user* and removed all URLs.
## Considerations for Using the Data
### Social Impact of Dataset
The NaijaSenti dataset has the potential to improve sentiment analysis for Nigerian languages, which is essential for understanding and analyzing the diverse perspectives of people in Nigeria. This dataset can enable researchers and developers to create sentiment analysis models that are specific to Nigerian languages, which can be used to gain insights into the social, cultural, and political views of people in Nigerian. Furthermore, this dataset can help address the issue of underrepresentation of Nigerian languages in natural language processing, paving the way for more equitable and inclusive AI technologies.
## Additional Information
### Dataset Curators
* Shamsuddeen Hassan Muhammad
* Idris Abdulmumin
* Ibrahim Said Ahmad
* Bello Shehu Bello
### Licensing Information
This NaijaSenti is licensed under a Creative Commons Attribution BY-NC-SA 4.0 International License
### Citation Information
```
@inproceedings{muhammad-etal-2022-naijasenti,
title = "{N}aija{S}enti: A {N}igerian {T}witter Sentiment Corpus for Multilingual Sentiment Analysis",
author = "Muhammad, Shamsuddeen Hassan and
Adelani, David Ifeoluwa and
Ruder, Sebastian and
Ahmad, Ibrahim Sa{'}id and
Abdulmumin, Idris and
Bello, Bello Shehu and
Choudhury, Monojit and
Emezue, Chris Chinenye and
Abdullahi, Saheed Salahudeen and
Aremu, Anuoluwapo and
Jorge, Al{\'\i}pio and
Brazdil, Pavel",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.63",
pages = "590--602",
}
```
### Contributions
> This work was carried out with support from Lacuna Fund, an initiative co-founded by The Rockefeller Foundation, Google.org, and Canada’s International Development Research Centre. The views expressed herein do not necessarily represent those of Lacuna Fund, its Steering Committee, its funders, or Meridian Institute. |