--- license: cc-by-nc-4.0 --- # Dataset Card for BBBicycles ## Dataset Summary Bent & Broken Bicycles (BBBicycles) dataset is a benchmark set for the novel task of **damaged object re-identification**, which aims to identify the same object in multiple images even in the presence of breaks, deformations, and missing parts. You can find an interactive preview [here](https://huggingface.co/spaces/GrainsPolito/BBBicyclesPreview). ## Dataset Structure The final dataset contains: - Total of 39,200 image - 2,800 unique IDs - 20 models - 140 IDs for each model
Information for each ID: Information for each render:
  • Model
  • Type
  • Texture type
  • Stickers
  • Background
  • Viewing Side
  • Focal Length
  • Presence of dirt
### Citation Information ``` @inproceedings{bbb_2022, title={Bent & Broken Bicycles: Leveraging synthetic data for damaged object re-identification}, author={Luca Piano, Filippo Gabriele Pratticò, Alessandro Sebastian Russo, Lorenzo Lanari, Lia Morra, Fabrizio Lamberti}, booktitle={2022 IEEE Winter Conference on Applications of Computer Vision (WACV)}, year={2022}, organization={IEEE} } ``` ### Credits The authors gratefully acknowledge the financial support of Reale Mutua Assicurazioni.