Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
BBBicycles / dataset_split_generator.py
AleRu12's picture
dataset split script
fff4be9
from os import listdir, walk
from os.path import isfile, isdir, join, splitext, exists, getmtime
from random import seed, randint, choice
import re
import json
import datetime
import argparse
parser = argparse.ArgumentParser(description='Generate BBBicycles split.')
parser.add_argument('-p', '--path', type=str, required=True,
help='directory containing the ID folders')
args = parser.parse_args()
path = args.path
random_seed = seed(1337)
train_val_bike_type_split = 10
img_regex = re.compile('(^img.\d*[.]png$)')
dir_regex = re.compile('(^\w+_)')
train = open("bike_train.txt", "w")
query_v = open("bike_query_val.txt", "w")
galley_v = open("bike_gallery_val.txt", "w")
query_t = open("bike_query_test.txt", "w")
galley_t = open("bike_gallery_test.txt", "w")
num_ids = 0
num_imgs = 0
num_damaged_imgs = 0
num_broken_imgs = 0
num_bent_imgs = 0
num_missingpart_imgs = 0
nums_missingpart_imgs = [0 for i in range(5)]
models_dist = {}
num_train_ids = 0
num_train_imgs = 0
num_damaged_train_imgs = 0
num_broken_train_imgs = 0
num_bent_train_imgs = 0
num_missingpart_train_imgs = 0
nums_missingpart_train_imgs = [0 for i in range(5)]
models_dist_train = {}
num_val_ids = 0
num_val_imgs = 0
num_damaged_val_imgs = 0
num_broken_val_imgs = 0
num_bent_val_imgs = 0
num_missingpart_val_imgs = 0
nums_missingpart_val_imgs = [0 for i in range(5)]
models_dist_val = {}
num_test_ids = 0
num_test_imgs = 0
num_damaged_test_imgs = 0
num_broken_test_imgs = 0
num_bent_test_imgs = 0
num_missingpart_test_imgs = 0
nums_missingpart_test_imgs = [0 for i in range(5)]
models_dist_test = {}
for id, bike in enumerate(listdir(path)):
if isdir(join(path, bike)) and dir_regex.match(bike) and exists(join(path, bike, "before")) and len(listdir(join(path, bike, "before"))) != 0 and exists(join(path, bike, "after")) and len(listdir(join(path, bike, "after"))) != 0 and exists(join(path, bike, "fixed_data.json")):
#aggiungere: prendere json dell'identità per estrarre info
json_fixed = open(join(path, bike, 'fixed_data.json'),)
data_fixed = json.load(json_fixed)
if str(data_fixed['Bike Type']) not in models_dist:
models_dist[str(data_fixed['Bike Type'])] = {str(data_fixed['Model']): 1}
elif str(data_fixed['Model']) not in models_dist[str(data_fixed['Bike Type'])]:
models_dist[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = 1
else:
models_dist[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = models_dist[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] + 1
c=0
num_ids = num_ids + 1
for type in ["before", "after"]:
for file in listdir(join(path, bike, type)):
if img_regex.match(file):
if exists(join(path, bike, type, splitext(file)[0] + '_variable.json')):
json_var = open(join(path, bike, type, splitext(file)[0] + '_variable.json'),)
data = json.load(json_var)
dmgid = 0 if type == "before" else int(data["Damage Type"])
missid = "00000" if type == "before" else str(data["Removed Parts"])
json_var.close()
if dmgid != 0:
num_damaged_imgs = num_damaged_imgs + 1
if dmgid == 2 or dmgid == 3:
num_broken_imgs = num_broken_imgs + 1
if dmgid == 1 or dmgid == 3:
num_bent_imgs = num_bent_imgs + 1
if missid != "00000" :
num_missingpart_imgs = num_missingpart_imgs + 1
for i in range(5):
if missid[i] == "1":
nums_missingpart_imgs[i] = nums_missingpart_imgs[i] + 1
num_imgs = num_imgs + 1
c=c+1
else:
print(bike)
if c != 14:
print(bike)
if str(data_fixed['Model']) in ['mfactory ', 'ghost', 'oldbike', 'rondo', 'verdona']:
#Train
if str(data_fixed['Bike Type']) not in models_dist_train:
models_dist_train[str(data_fixed['Bike Type'])] = {str(data_fixed['Model']): 1}
elif str(data_fixed['Model']) not in models_dist_train[str(data_fixed['Bike Type'])]:
models_dist_train[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = 1
else:
models_dist_train[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = models_dist_train[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] + 1
num_train_ids = num_train_ids + 1
for type in ["before", "after"]:
for file in listdir(join(path, bike, type)):
if img_regex.match(file) and exists(join(path, bike, type, splitext(file)[0] + '_variable.json')):
img_path = join(bike, type, file)
json_var = open(join(path, bike, type, splitext(file)[0] + '_variable.json'),)
data = json.load(json_var)
camid = int(data["Focal Length"])
viewid = int(data["Viewing Side"])
dmgid = 0 if type == "before" else int(data["Damage Type"])
missid = "00000" if type == "before" else str(data["Removed Parts"])
train.write("{} {} {} {} {} {}\n".format(img_path, id, camid, viewid, dmgid, missid))
json_var.close()
if dmgid != 0:
num_damaged_train_imgs = num_damaged_train_imgs + 1
if dmgid == 2 or dmgid == 3:
num_broken_train_imgs = num_broken_train_imgs + 1
if dmgid == 1 or dmgid == 3:
num_bent_train_imgs = num_bent_train_imgs + 1
if missid != "00000" :
num_missingpart_train_imgs = num_missingpart_train_imgs + 1
for i in range(5):
if missid[i] == "1":
nums_missingpart_train_imgs[i] = nums_missingpart_train_imgs[i] + 1
num_train_imgs = num_train_imgs + 1
else:
if str(data_fixed['Model']) not in ['mirage', 'gbike', 'enduro']:
if str(data_fixed['Model']) not in ['becane', 'btwin', 'croad'] and randint(0, 100) > train_val_bike_type_split:
if str(data_fixed['Bike Type']) not in models_dist_train:
models_dist_train[str(data_fixed['Bike Type'])] = {str(data_fixed['Model']): 1}
elif str(data_fixed['Model']) not in models_dist_train[str(data_fixed['Bike Type'])]:
models_dist_train[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = 1
else:
models_dist_train[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = models_dist_train[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] + 1
num_train_ids = num_train_ids + 1
for type in ["before", "after"]:
for file in listdir(join(path, bike, type)):
if img_regex.match(file) and exists(join(path, bike, type, splitext(file)[0] + '_variable.json')):
img_path = join(bike, type, file)
json_var = open(join(path, bike, type, splitext(file)[0] + '_variable.json'),)
data = json.load(json_var)
camid = int(data["Focal Length"])
viewid = int(data["Viewing Side"])
dmgid = 0 if type == "before" else int(data["Damage Type"])
missid = "00000" if type == "before" else str(data["Removed Parts"])
train.write("{} {} {} {} {} {}\n".format(img_path, id, camid, viewid, dmgid, missid))
json_var.close()
if dmgid != 0:
num_damaged_train_imgs = num_damaged_train_imgs + 1
if dmgid == 2 or dmgid == 3:
num_broken_train_imgs = num_broken_train_imgs + 1
if dmgid == 1 or dmgid == 3:
num_bent_train_imgs = num_bent_train_imgs + 1
if missid != "00000" :
num_missingpart_train_imgs = num_missingpart_train_imgs + 1
for i in range(5):
if missid[i] == "1":
nums_missingpart_train_imgs[i] = nums_missingpart_train_imgs[i] + 1
num_train_imgs = num_train_imgs + 1
else:
#Val
if str(data_fixed['Bike Type']) not in models_dist_val:
models_dist_val[str(data_fixed['Bike Type'])] = {str(data_fixed['Model']): 1}
elif str(data_fixed['Model']) not in models_dist_val[str(data_fixed['Bike Type'])]:
models_dist_val[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = 1
else:
models_dist_val[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = models_dist_val[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] + 1
num_val_ids = num_val_ids + 1
for type in ["before", "after"]:
files = [f for f in listdir(join(path, bike, type)) if img_regex.match(f) and exists(join(path, bike, type, splitext(f)[0] + '_variable.json'))]
file = choice(files)
img_path = join(bike, type, file)
json_var = open(join(path, bike, type, splitext(file)[0] + '_variable.json'),)
data = json.load(json_var)
camid = int(data["Focal Length"])
viewid = int(data["Viewing Side"])
dmgid = 0 if type == "before" else int(data["Damage Type"])
missid = "00000" if type == "before" else str(data["Removed Parts"])
if type == "before" :
galley_v.write("{} {} {} {} {} {}\n".format(img_path, id, camid, viewid, dmgid, missid))
else:
query_v.write("{} {} {} {} {} {}\n".format(img_path, id, camid, viewid, dmgid, missid))
json_var.close()
if dmgid != 0:
num_damaged_val_imgs = num_damaged_val_imgs + 1
if dmgid == 2 or dmgid == 3:
num_broken_val_imgs = num_broken_val_imgs + 1
if dmgid == 1 or dmgid == 3:
num_bent_val_imgs = num_bent_val_imgs + 1
if missid != "00000" :
num_missingpart_val_imgs = num_missingpart_val_imgs + 1
for i in range(5):
if missid[i] == "1":
nums_missingpart_val_imgs[i] = nums_missingpart_val_imgs[i] + 1
num_val_imgs = num_val_imgs + 1
else:
#Test
if str(data_fixed['Bike Type']) not in models_dist_test:
models_dist_test[str(data_fixed['Bike Type'])] = {str(data_fixed['Model']): 1}
elif str(data_fixed['Model']) not in models_dist_test[str(data_fixed['Bike Type'])]:
models_dist_test[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = 1
else:
models_dist_test[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] = models_dist_test[str(data_fixed['Bike Type'])][str(data_fixed['Model'])] + 1
num_test_ids = num_test_ids + 1
for type in ["before", "after"]:
files = [f for f in listdir(join(path, bike, type)) if img_regex.match(f) and exists(join(path, bike, type, splitext(f)[0] + '_variable.json'))]
if not files:
print(join(path, bike, type))
file = choice(files)
img_path = join(bike, type, file)
json_var = open(join(path, bike, type, splitext(file)[0] + '_variable.json'),)
data = json.load(json_var)
camid = int(data["Focal Length"])
viewid = int(data["Viewing Side"])
dmgid = 0 if type == "before" else int(data["Damage Type"])
missid = "00000" if type == "before" else str(data["Removed Parts"])
if type == "before" :
galley_t.write("{} {} {} {} {} {}\n".format(img_path, id, camid, viewid, dmgid, missid))
else:
query_t.write("{} {} {} {} {} {}\n".format(img_path, id, camid, viewid, dmgid, missid))
json_var.close()
if dmgid != 0:
num_damaged_test_imgs = num_damaged_test_imgs + 1
if dmgid == 2 or dmgid == 3:
num_broken_test_imgs = num_broken_test_imgs + 1
if dmgid == 1 or dmgid == 3:
num_bent_test_imgs = num_bent_test_imgs + 1
if missid != "00000" :
num_missingpart_test_imgs = num_missingpart_test_imgs + 1
for i in range(5):
if missid[i] == "1":
nums_missingpart_test_imgs[i] = nums_missingpart_test_imgs[i] + 1
num_test_imgs = num_test_imgs + 1
json_fixed.close()
else:
print(bike)
train.close()
query_v.close()
galley_v.close()
query_t.close()
galley_t.close()
data = {}
data["General"] = []
data["General"].append({
'Num IDs': num_ids,
'Num Bike types': len(models_dist.keys()),
'Num Models': sum(len(models_dist[k].keys()) for k in models_dist.keys()),
'Num images': num_imgs,
'Num bent images': num_bent_imgs,
'Num broken images': num_broken_imgs,
'Num damaged images': num_damaged_imgs,
'Num images with missing parts': num_missingpart_imgs,
'Num images with missing Front Wheel': nums_missingpart_imgs[0],
'Num images with missing Rear Wheel': nums_missingpart_imgs[1],
'Num images with missing Seat': nums_missingpart_imgs[2],
'Num images with missing Handlebar': nums_missingpart_imgs[3],
'Num images with missing Pedals': nums_missingpart_imgs[4]
})
data["Train"] = []
data["Train"].append({
'Num IDs': num_train_ids,
'Num Bike types': len(models_dist_train.keys()),
'Num Models': sum(len(models_dist_train[k].keys()) for k in models_dist_train.keys()),
'Num images': num_train_imgs,
'Num bent images': num_bent_train_imgs,
'Num broken images': num_broken_train_imgs,
'Num damaged images': num_damaged_train_imgs,
'Num images with missing parts': num_missingpart_train_imgs,
'Num images with missing Front Wheel': nums_missingpart_train_imgs[0],
'Num images with missing Rear Wheel': nums_missingpart_train_imgs[1],
'Num images with missing Seat': nums_missingpart_train_imgs[2],
'Num images with missing Handlebar': nums_missingpart_train_imgs[3],
'Num images with missing Pedals': nums_missingpart_train_imgs[4]
})
data["Validation"] = []
data["Validation"].append({
'Num IDs': num_val_ids,
'Num Bike types': len(models_dist_val.keys()),
'Num Models': sum(len(models_dist_val[k].keys()) for k in models_dist_val.keys()),
'Num images': num_val_imgs,
'Num bent images': num_bent_val_imgs,
'Num broken images': num_broken_val_imgs,
'Num damaged images': num_damaged_val_imgs,
'Num images with missing parts': num_missingpart_val_imgs,
'Num images with missing Front Wheel': nums_missingpart_val_imgs[0],
'Num images with missing Rear Wheel': nums_missingpart_val_imgs[1],
'Num images with missing Seat': nums_missingpart_val_imgs[2],
'Num images with missing Handlebar': nums_missingpart_val_imgs[3],
'Num images with missing Pedals': nums_missingpart_val_imgs[4]
})
data["Test"] = []
data["Test"].append({
'Num IDs': num_test_ids,
'Num Bike types': len(models_dist_test.keys()),
'Num Models': sum(len(models_dist_test[k].keys()) for k in models_dist_test.keys()),
'Num images': num_test_imgs,
'Num bent images': num_bent_test_imgs,
'Num broken images': num_broken_test_imgs,
'Num damaged images': num_damaged_test_imgs,
'Num images with missing parts': num_missingpart_test_imgs,
'Num images with missing Front Wheel': nums_missingpart_test_imgs[0],
'Num images with missing Rear Wheel': nums_missingpart_test_imgs[1],
'Num images with missing Seat': nums_missingpart_test_imgs[2],
'Num images with missing Handlebar': nums_missingpart_test_imgs[3],
'Num images with missing Pedals': nums_missingpart_test_imgs[4]
})
with open('bike_current_split_stats.json', 'w', encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=4)