GotThatData commited on
Commit
0d94041
·
verified ·
1 Parent(s): 2b47ebc
Files changed (1) hide show
  1. kraken-data-collection-script +212 -71
kraken-data-collection-script CHANGED
@@ -1,79 +1,200 @@
1
  ```python
2
- def collect_continuous(self, interval_minutes: int = 3, batch_size: int = 30):
3
- """
4
- Enhanced continuous data collection with optimal parameters
5
-
6
- Args:
7
- interval_minutes: Minutes between each collection (default: 3)
8
- batch_size: Number of snapshots per batch (default: 30)
9
- """
10
- self.collection_start_time = datetime.now()
11
- logger.info(f"Starting enhanced continuous collection at {self.collection_start_time}")
12
- logger.info(f"Collecting {batch_size} snapshots every {interval_minutes} minutes")
13
- logger.info(f"Total API calls per batch: ~{batch_size * len(self.pairs)}")
14
- logger.info(f"Estimated daily data points: {(24 * 60 // interval_minutes) * batch_size * len(self.pairs)}")
15
- logger.info("Press CTRL+C to stop collection")
16
-
17
- while self.running:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  try:
19
- batch_start_time = datetime.now()
20
- records = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- for i in range(batch_size):
23
- if not self.running:
24
- break
25
-
26
- snapshot_start = datetime.now()
27
- logger.info(f"Collecting snapshot {i+1}/{batch_size}")
28
-
29
- for pair in self.pairs:
30
- if self.check_api_rate():
31
- record = self.fetch_ticker_data(pair)
32
- if record:
33
- records.append(record)
34
- else:
35
- time.sleep(1) # Wait if approaching rate limit
36
-
37
- # Dynamic sleep calculation
38
- elapsed = (datetime.now() - snapshot_start).total_seconds()
39
- sleep_time = max(0.5, 1.5 - elapsed) # Ensure at least 0.5s between snapshots
40
-
41
- if i < batch_size - 1 and self.running:
42
- time.sleep(sleep_time)
43
 
44
- if records:
45
- df = pd.DataFrame(records)
46
- current_timestamp = datetime.now().strftime('%Y%m%d_%H%M')
47
- self.upload_to_huggingface(df, current_timestamp)
48
 
49
- self.data_points_collected += len(records)
50
- collection_duration = (datetime.now() - self.collection_start_time)
51
-
52
- # Enhanced batch summary
53
- logger.info("\nBatch Summary:")
54
- logger.info(f"Records in batch: {len(records)}")
55
- logger.info(f"Pairs collected: {len(df['pair'].unique())}")
56
- logger.info(f"Total data points: {self.data_points_collected}")
57
- logger.info(f"Collection duration: {collection_duration}")
58
- logger.info(f"Data points per hour: {self.data_points_collected / collection_duration.total_seconds() * 3600:.2f}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- # Adaptive interval timing
61
- batch_duration = (datetime.now() - batch_start_time).total_seconds()
62
- sleep_time = max(0, interval_minutes * 60 - batch_duration)
 
 
 
 
63
 
64
- if self.running and sleep_time > 0:
65
- logger.info(f"Waiting {sleep_time:.2f} seconds until next batch...")
66
- time.sleep(sleep_time)
67
 
68
  except Exception as e:
69
- logger.error(f"Error in continuous collection: {e}")
70
- logger.info("Waiting 30 seconds before retry...")
71
- time.sleep(30)
72
- ```
73
 
74
- And update the main function:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
- ```python
77
  def main():
78
  try:
79
  collector = KrakenHuggingFaceCollector(
@@ -81,7 +202,7 @@ def main():
81
  repo_id="GotThatData/kraken-trading-data"
82
  )
83
 
84
- # Enhanced collection parameters
85
  collector.collect_continuous(
86
  interval_minutes=3, # Collect every 3 minutes
87
  batch_size=30 # 30 snapshots per batch
@@ -93,10 +214,30 @@ def main():
93
  except Exception as e:
94
  logger.error(f"Fatal error: {e}")
95
  raise
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  ```
97
 
98
- This enhanced version will give you:
99
- - 30 snapshots × 9 pairs = 270 data points per batch
100
- - Every 3 minutes = 20 batches per hour
101
- - 20 batches × 270 points = 5,400 data points per hour
102
- - ~129,600 data points per day
 
 
1
  ```python
2
+ import krakenex
3
+ import pandas as pd
4
+ from datetime import datetime
5
+ import time
6
+ import os
7
+ from typing import Dict, List, Optional
8
+ import logging
9
+ from huggingface_hub import HfApi
10
+
11
+ # Set up logging
12
+ logging.basicConfig(
13
+ level=logging.INFO,
14
+ format='%(asctime)s - %(levelname)s - %(message)s',
15
+ handlers=[
16
+ logging.FileHandler(f'kraken_collection_{datetime.now().strftime("%Y%m%d")}.log'),
17
+ logging.StreamHandler()
18
+ ]
19
+ )
20
+ logger = logging.getLogger(__name__)
21
+
22
+ class KrakenHuggingFaceCollector:
23
+ def __init__(self, kraken_key_path: str, repo_id: str):
24
+ self.kraken_api = krakenex.API()
25
+ try:
26
+ self.kraken_api.load_key(kraken_key_path)
27
+ logger.info("Successfully loaded Kraken API key")
28
+ except Exception as e:
29
+ logger.error(f"Failed to load Kraken API key: {e}")
30
+ raise
31
+
32
  try:
33
+ self.hf_api = HfApi()
34
+ self.repo_id = repo_id
35
+ logger.info("Successfully connected to Hugging Face")
36
+ except Exception as e:
37
+ logger.error(f"Failed to initialize Hugging Face API: {e}")
38
+ raise
39
+
40
+ self.pairs = [
41
+ "XXBTZUSD", # Bitcoin/USD
42
+ "XETHZUSD", # Ethereum/USD
43
+ "XXRPZUSD", # Ripple/USD
44
+ "ADAUSD", # Cardano/USD
45
+ "XDGUSD", # Dogecoin/USD
46
+ "SOLUSD", # Solana/USD
47
+ "DOTUSD", # Polkadot/USD
48
+ "MATICUSD", # Polygon/USD
49
+ "LTCUSD" # Litecoin/USD
50
+ ]
51
+
52
+ self.running = True
53
+ self.data_points_collected = 0
54
+ self.collection_start_time = None
55
+ self.api_calls = 0
56
+ self.last_api_reset = datetime.now()
57
+
58
+ def check_api_rate(self) -> bool:
59
+ """Monitor API call rate"""
60
+ current_time = datetime.now()
61
+ if (current_time - self.last_api_reset).total_seconds() >= 30:
62
+ self.api_calls = 0
63
+ self.last_api_reset = current_time
64
+ return self.api_calls < 15
65
+
66
+ def fetch_ticker_data(self, pair: str) -> Optional[Dict]:
67
+ """Fetch ticker data with rate limiting"""
68
+ if not self.check_api_rate():
69
+ logger.warning("API rate limit approaching, waiting...")
70
+ time.sleep(2)
71
 
72
+ try:
73
+ self.api_calls += 1
74
+ response = self.kraken_api.query_public('Ticker', {'pair': pair})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
+ if 'error' in response and response['error']:
77
+ logger.error(f"Kraken API error for {pair}: {response['error']}")
78
+ return None
 
79
 
80
+ data = response['result']
81
+ pair_data = list(data.values())[0]
82
+
83
+ return {
84
+ 'timestamp': datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),
85
+ 'pair': pair,
86
+ 'price': float(pair_data['c'][0]),
87
+ 'volume': float(pair_data['v'][0]),
88
+ 'bid': float(pair_data['b'][0]),
89
+ 'ask': float(pair_data['a'][0]),
90
+ 'low': float(pair_data['l'][0]),
91
+ 'high': float(pair_data['h'][0]),
92
+ 'vwap': float(pair_data['p'][0]),
93
+ 'trades': int(pair_data['t'][0])
94
+ }
95
+
96
+ except Exception as e:
97
+ logger.error(f"Error fetching data for {pair}: {e}")
98
+ return None
99
+
100
+ def upload_to_huggingface(self, df: pd.DataFrame, timestamp: str) -> None:
101
+ """Upload DataFrame to Hugging Face as CSV"""
102
+ try:
103
+ # Create local directories
104
+ os.makedirs('data/continuous', exist_ok=True)
105
+
106
+ # Save locally first
107
+ local_path = f'data/continuous/kraken_trades_{timestamp}.csv'
108
+ df.to_csv(local_path, index=False)
109
 
110
+ # Upload to Hugging Face
111
+ self.hf_api.upload_file(
112
+ path_or_fileobj=local_path,
113
+ path_in_repo=f"data/continuous/kraken_trades_{timestamp}.csv",
114
+ repo_id=self.repo_id,
115
+ repo_type="dataset"
116
+ )
117
 
118
+ logger.info(f"Successfully uploaded batch to Hugging Face")
 
 
119
 
120
  except Exception as e:
121
+ logger.error(f"Error uploading to Hugging Face: {e}")
122
+ logger.info(f"Data saved locally at: {local_path}")
 
 
123
 
124
+ def collect_continuous(self, interval_minutes: int = 3, batch_size: int = 30):
125
+ """
126
+ Enhanced continuous data collection
127
+
128
+ Args:
129
+ interval_minutes: Minutes between each collection (default: 3)
130
+ batch_size: Number of snapshots per batch (default: 30)
131
+ """
132
+ self.collection_start_time = datetime.now()
133
+ logger.info(f"Starting enhanced continuous collection at {self.collection_start_time}")
134
+ logger.info(f"Collecting {batch_size} snapshots every {interval_minutes} minutes")
135
+ logger.info(f"Total API calls per batch: ~{batch_size * len(self.pairs)}")
136
+ logger.info(f"Estimated daily data points: {(24 * 60 // interval_minutes) * batch_size * len(self.pairs)}")
137
+ logger.info("Press CTRL+C to stop collection")
138
+
139
+ while self.running:
140
+ try:
141
+ batch_start_time = datetime.now()
142
+ records = []
143
+
144
+ for i in range(batch_size):
145
+ if not self.running:
146
+ break
147
+
148
+ snapshot_start = datetime.now()
149
+ logger.info(f"Collecting snapshot {i+1}/{batch_size}")
150
+
151
+ for pair in self.pairs:
152
+ if self.check_api_rate():
153
+ record = self.fetch_ticker_data(pair)
154
+ if record:
155
+ records.append(record)
156
+ else:
157
+ time.sleep(1)
158
+
159
+ # Dynamic sleep calculation
160
+ elapsed = (datetime.now() - snapshot_start).total_seconds()
161
+ sleep_time = max(0.5, 1.5 - elapsed)
162
+
163
+ if i < batch_size - 1 and self.running:
164
+ time.sleep(sleep_time)
165
+
166
+ if records:
167
+ df = pd.DataFrame(records)
168
+ current_timestamp = datetime.now().strftime('%Y%m%d_%H%M')
169
+ self.upload_to_huggingface(df, current_timestamp)
170
+
171
+ self.data_points_collected += len(records)
172
+ collection_duration = (datetime.now() - self.collection_start_time)
173
+
174
+ logger.info("\nBatch Summary:")
175
+ logger.info(f"Records in batch: {len(records)}")
176
+ logger.info(f"Pairs collected: {len(df['pair'].unique())}")
177
+ logger.info(f"Total data points: {self.data_points_collected}")
178
+ logger.info(f"Collection duration: {collection_duration}")
179
+ logger.info(f"Data points per hour: {self.data_points_collected / collection_duration.total_seconds() * 3600:.2f}")
180
+
181
+ # Adaptive interval timing
182
+ batch_duration = (datetime.now() - batch_start_time).total_seconds()
183
+ sleep_time = max(0, interval_minutes * 60 - batch_duration)
184
+
185
+ if self.running and sleep_time > 0:
186
+ logger.info(f"Waiting {sleep_time:.2f} seconds until next batch...")
187
+ time.sleep(sleep_time)
188
+
189
+ except Exception as e:
190
+ logger.error(f"Error in continuous collection: {e}")
191
+ logger.info("Waiting 30 seconds before retry...")
192
+ time.sleep(30)
193
+
194
+ logger.info("Data collection stopped")
195
+ logger.info(f"Total data points collected: {self.data_points_collected}")
196
+ logger.info(f"Total collection time: {datetime.now() - self.collection_start_time}")
197
 
 
198
  def main():
199
  try:
200
  collector = KrakenHuggingFaceCollector(
 
202
  repo_id="GotThatData/kraken-trading-data"
203
  )
204
 
205
+ # Start collection with enhanced parameters
206
  collector.collect_continuous(
207
  interval_minutes=3, # Collect every 3 minutes
208
  batch_size=30 # 30 snapshots per batch
 
214
  except Exception as e:
215
  logger.error(f"Fatal error: {e}")
216
  raise
217
+
218
+ if __name__ == "__main__":
219
+ main()
220
+ ```
221
+
222
+ To use this script:
223
+
224
+ 1. Save it as `kraken_data_collector.py`
225
+
226
+ 2. Make sure you have your `kraken.key` file with your API credentials
227
+
228
+ 3. Install required packages if you haven't:
229
+ ```bash
230
+ pip install krakenex pandas huggingface_hub
231
+ ```
232
+
233
+ 4. Run the script:
234
+ ```bash
235
+ python kraken_data_collector.py
236
  ```
237
 
238
+ This will:
239
+ - Collect 30 snapshots every 3 minutes
240
+ - Save data locally and to Hugging Face
241
+ - Provide detailed logging
242
+ - Handle errors gracefully
243
+ - Respect API rate limits