|
import csv |
|
import json |
|
import os |
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{juraska-etal-2019-viggo, |
|
title = "{V}i{GGO}: A Video Game Corpus for Data-To-Text Generation in Open-Domain Conversation", |
|
author = "Juraska, Juraj and |
|
Bowden, Kevin and |
|
Walker, Marilyn", |
|
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation", |
|
month = oct # "{--}" # nov, |
|
year = "2019", |
|
address = "Tokyo, Japan", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/W19-8623", |
|
doi = "10.18653/v1/W19-8623", |
|
pages = "164--172", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ViGGO was designed for the task of data-to-text generation in chatbots (as opposed to task-oriented dialogue systems), with target responses being more conversational than information-seeking, yet constrained to the information presented in a meaning representation. The dataset, being relatively small and clean, can also serve for demonstrating transfer learning capabilities of neural models. |
|
""" |
|
|
|
_URLs = { |
|
"train": "train.csv", |
|
"validation": "validation.csv", |
|
"test": "test.csv", |
|
"challenge_train_1_percent": "challenge_train_1_percent.csv", |
|
"challenge_train_1_percent": "challenge_train_1_percent.csv", |
|
"challenge_train_1_percent": "challenge_train_1_percent.csv", |
|
"challenge_train_1_percent": "challenge_train_1_percent.csv", |
|
"challenge_train_1_percent": "challenge_train_1_percent.csv", |
|
"challenge_train_1_percent": "challenge_train_1_percent.csv", |
|
} |
|
|
|
|
|
class Viggo(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
DEFAULT_CONFIG_NAME = "viggo" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"gem_id": datasets.Value("string"), |
|
"meaning_representation": datasets.Value("string"), |
|
"target": datasets.Value("string"), |
|
"references": [datasets.Value("string")], |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=datasets.info.SupervisedKeysData( |
|
input="meaning_representation", output="target" |
|
), |
|
homepage="https://nlds.soe.ucsc.edu/viggo", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl} |
|
) |
|
for spl in _URLs.keys() |
|
] |
|
|
|
def _generate_examples(self, filepath, split, filepaths=None, lang=None): |
|
"""Yields examples.""" |
|
with open(filepath, "r", encoding='utf-8-sig') as csvfile: |
|
reader = csv.DictReader(csvfile) |
|
for id_, row in enumerate(reader): |
|
yield id_, { |
|
"gem_id": f"cs_restaurants-{split}-{id_}", |
|
"meaning_representation": row["mr"], |
|
"target": row["ref"], |
|
"references": [row["ref"]], |
|
} |
|
|