references / generate_evaluation_datasets.py
lewtun's picture
lewtun HF staff
Refactor conversion script
7a16ae1
raw
history blame
3.84 kB
import typer
from datasets import (Dataset, DatasetDict, get_dataset_config_names,
load_dataset)
from huggingface_hub import list_datasets
import pandas as pd
app = typer.Typer()
def convert(dataset_id: str):
errors = []
dataset_name = dataset_id.split("/")[-1]
try:
configs = get_dataset_config_names(dataset_id)
except:
typer.echo(f"❌ Failed to get configs for {dataset_id}")
errors.append({"dataset_name": dataset_id, "error_type": "config"})
return errors
for config in configs:
typer.echo(f"πŸ› οΈπŸ› οΈπŸ› οΈ Converting {dataset_id} with config {config} πŸ› οΈπŸ› οΈπŸ› οΈ")
try:
raw_datasets = load_dataset(dataset_id, name=config)
except:
typer.echo(f"❌ Failed to load {dataset_id} with config {config}")
errors.append({"dataset_name": dataset_id, "config": config, "error_type": "load"})
continue
datasets_to_convert = DatasetDict()
for split, dataset in raw_datasets.items():
if split not in ["train", "validation"]:
datasets_to_convert[split] = dataset
for split, dataset in datasets_to_convert.items():
columns_to_keep = ["gem_id", "target", "references"]
remainder_cols = validate_columns(dataset)
if len(remainder_cols) > 0:
typer.echo(
f"❌ Skipping {dataset_name}/{config}/{split} due to missing columns: {', '.join(remainder_cols)}"
)
errors.append({"dataset_name": dataset_id, "config": config, "split": split, "error_type": "missing_columns", "missing_columns": remainder_cols})
else:
# Add `input` column if it exists
if "input" in dataset.column_names:
columns_to_keep.append("input")
# The test split doesn't have a parent ID
# TODO(lewtun): check this logic!
if split != "test" and "gem_parent_id" in dataset.column_names:
columns_to_keep.append("gem_parent_id")
# The `datasets` JSON serializer is buggy - use `pandas` for now
df = dataset.to_pandas()
# Exclude dummy config names for comparison with GitHub source dataset
if config in ["default", "xsum", "totto"]:
reference_name = f"{dataset_name}_{split}"
else:
reference_name = f"{dataset_name}_{config}_{split}"
df[columns_to_keep].to_json(f"{reference_name}.json", orient="records")
typer.echo(f"βœ… Successfully converted {dataset_id} with config {config}")
return errors
def validate_columns(dataset: Dataset):
ref_columns = ["gem_id", "target", "references"]
columns = dataset.column_names
return set(ref_columns) - set(columns)
@app.command()
def extract_evaluation_datasets():
errors = []
all_datasets = list_datasets()
# Filter for GEM datasets
gem_datasets = [dataset for dataset in all_datasets if dataset.id.startswith("GEM/")]
# Filter for blocklist
blocklist = [
"indonlg", # Can't load
"RiSAWOZ", # Can't load
"CrossWOZ", # Can't load
"references", # This repo, so exclude!
]
blocklist = ["GEM/" + dataset for dataset in blocklist]
gem_datasets = [dataset for dataset in gem_datasets if dataset.id not in blocklist]
for dataset in gem_datasets:
errors.extend(convert(dataset.id))
if len(errors):
typer.echo("πŸ™ˆ Found conversion errors!")
errors_df = pd.DataFrame(errors)
errors_df.to_csv("conversion_errors.csv", index=False)
typer.echo(f"πŸ₯³ All datasets converted!")
if __name__ == "__main__":
app()