Datasets:
GEM
/

Tasks:
Other
Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 13,472 Bytes
c022215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
---
annotations_creators:
- automatically-created
language_creators:
- unknown
languages:
- unknown
licenses:
- apache-2.0
multilinguality:
- unknown
pretty_name: ART
size_categories:
- unknown
source_datasets:
- original
task_categories:
- reasoning
task_ids:
- unknown
---

# Dataset Card for GEM/ART

## Dataset Description

- **Homepage:** http://abductivecommonsense.xyz/
- **Repository:** https://storage.googleapis.com/ai2-mosaic/public/abductive-commonsense-reasoning-iclr2020/anlg.zip
- **Paper:** https://openreview.net/pdf?id=Byg1v1HKDB
- **Leaderboard:** N/A
- **Point of Contact:** Chandra Bhagavatulla

### Link to Main Data Card

You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/ART).

### Dataset Summary 

Abductive reasoning is inference to the most plausible explanation. For example, if Jenny finds her house in a mess when she returns from work, and remembers that she left a window open, she can hypothesize that a thief broke into her house and caused the mess, as the most plausible explanation.
This data loader focuses on abductive NLG: a conditional English generation task for explaining given observations in natural language. 

You can load the dataset via:
```
import datasets
data = datasets.load_dataset('GEM/ART')
```
The data loader can be found [here](https://huggingface.co/datasets/GEM/ART).

#### website
[Website](http://abductivecommonsense.xyz/)

#### paper
[OpenReview](https://openreview.net/pdf?id=Byg1v1HKDB)

#### authors
Chandra Bhagavatula (AI2), Ronan Le Bras (AI2), Chaitanya Malaviya (AI2), Keisuke Sakaguchi (AI2), Ari Holtzman (AI2, UW), Hannah Rashkin (AI2, UW), Doug Downey (AI2), Wen-tau Yih (AI2), Yejin Choi  (AI2, UW)

## Dataset Overview

### Where to find the Data and its Documentation

#### Webpage

<!-- info: What is the webpage for the dataset (if it exists)? -->
<!-- scope: telescope -->
[Website](http://abductivecommonsense.xyz/)

#### Download

<!-- info: What is the link to where the original dataset is hosted? -->
<!-- scope: telescope -->
[Google Storage](https://storage.googleapis.com/ai2-mosaic/public/abductive-commonsense-reasoning-iclr2020/anlg.zip)

#### Paper

<!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
<!-- scope: telescope -->
[OpenReview](https://openreview.net/pdf?id=Byg1v1HKDB)

#### BibTex

<!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
<!-- scope: microscope -->
```
@inproceedings{
Bhagavatula2020Abductive,
title={Abductive Commonsense Reasoning},
author={Chandra Bhagavatula and Ronan Le Bras and Chaitanya Malaviya and Keisuke Sakaguchi and Ari Holtzman and Hannah Rashkin and Doug Downey and Wen-tau Yih and Yejin Choi},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=Byg1v1HKDB}
}
```

#### Contact Name

<!-- quick -->
<!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
Chandra Bhagavatulla

#### Contact Email

<!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
[email protected]

#### Has a Leaderboard?

<!-- info: Does the dataset have an active leaderboard? -->
<!-- scope: telescope -->
no


### Languages and Intended Use

#### Multilingual?

<!-- quick -->
<!-- info: Is the dataset multilingual? -->
<!-- scope: telescope -->
no

#### Covered Languages

<!-- quick -->
<!-- info: What languages/dialects are covered in the dataset? -->
<!-- scope: telescope -->
`English`

#### Whose Language?

<!-- info: Whose language is in the dataset? -->
<!-- scope: periscope -->
Crowdworkers on the Amazon Mechanical Turk platform based in the U.S, Canada, U.K and Australia. 

#### License

<!-- quick -->
<!-- info: What is the license of the dataset? -->
<!-- scope: telescope -->
apache-2.0: Apache License 2.0

#### Intended Use

<!-- info: What is the intended use of the dataset? -->
<!-- scope: microscope -->
To study the viability of language-based abductive reasoning. Training and evaluating models to generate a plausible hypothesis to explain two given observations.

#### Primary Task

<!-- info: What primary task does the dataset support? -->
<!-- scope: telescope -->
Reasoning


### Credit

#### Curation Organization Type(s)

<!-- info: In what kind of organization did the dataset curation happen? -->
<!-- scope: telescope -->
`industry`

#### Curation Organization(s)

<!-- info: Name the organization(s). -->
<!-- scope: periscope -->
Allen Institute for AI

#### Dataset Creators

<!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
<!-- scope: microscope -->
Chandra Bhagavatula (AI2), Ronan Le Bras (AI2), Chaitanya Malaviya (AI2), Keisuke Sakaguchi (AI2), Ari Holtzman (AI2, UW), Hannah Rashkin (AI2, UW), Doug Downey (AI2), Wen-tau Yih (AI2), Yejin Choi  (AI2, UW)

#### Funding

<!-- info: Who funded the data creation? -->
<!-- scope: microscope -->
Allen Institute for AI

#### Who added the Dataset to GEM?

<!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
<!-- scope: microscope -->
Chandra Bhagavatula (AI2), Ronan LeBras (AI2), Aman Madaan (CMU), Nico Daheim (RWTH Aachen University)


### Dataset Structure

#### Data Fields

<!-- info: List and describe the fields present in the dataset. -->
<!-- scope: telescope -->
- `observation_1`: A string describing an observation / event.
- `observation_2`: A string describing an observation / event.
- `label`: A string that plausibly explains why observation_1 and observation_2 might have happened.

#### How were labels chosen?

<!-- info: How were the labels chosen? -->
<!-- scope: microscope -->
Explanations were authored by crowdworkers on the Amazon Mechanical Turk platform using a custom template designed by the creators of the dataset.

#### Example Instance

<!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
<!-- scope: periscope -->
```
{
'gem_id': 'GEM-ART-validation-0',
'observation_1': 'Stephen was at a party.',
'observation_2': 'He checked it but it was completely broken.',
'label': 'Stephen knocked over a vase while drunk.'
}
```

#### Data Splits

<!-- info: Describe and name the splits in the dataset if there are more than one. -->
<!-- scope: periscope -->
- `train`: Consists of training instances. 
- `dev`: Consists of dev instances.
- `test`: Consists of test instances.




## Dataset in GEM

### Rationale for Inclusion in GEM

#### Why is the Dataset in GEM?

<!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
<!-- scope: microscope -->
Abductive reasoning is a crucial capability of humans and ART is the first dataset curated to study language-based abductive reasoning.

#### Similar Datasets

<!-- info: Do other datasets for the high level task exist? -->
<!-- scope: telescope -->
no

#### Ability that the Dataset measures

<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: periscope -->
Whether models can reason abductively about a given pair of observations.


### GEM-Specific Curation

#### Modificatied for GEM?

<!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
<!-- scope: telescope -->
no

#### Additional Splits?

<!-- info: Does GEM provide additional splits to the dataset? -->
<!-- scope: telescope -->
no


### Getting Started with the Task

#### Pointers to Resources

<!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
<!-- scope: microscope -->
- Paper: https://arxiv.org/abs/1908.05739
- Code: https://github.com/allenai/abductive-commonsense-reasoning



## Previous Results

### Previous Results

#### Measured Model Abilities

<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: telescope -->
Whether models can reason abductively about a given pair of observations.

#### Metrics

<!-- info: What metrics are typically used for this task? -->
<!-- scope: periscope -->
`BLEU`, `BERT-Score`, `ROUGE`

#### Previous results available?

<!-- info: Are previous results available? -->
<!-- scope: telescope -->
no



## Dataset Curation

### Original Curation

#### Sourced from Different Sources

<!-- info: Is the dataset aggregated from different data sources? -->
<!-- scope: telescope -->
no


### Language Data

#### How was Language Data Obtained?

<!-- info: How was the language data obtained? -->
<!-- scope: telescope -->
`Crowdsourced`

#### Where was it crowdsourced?

<!-- info: If crowdsourced, where from? -->
<!-- scope: periscope -->
`Amazon Mechanical Turk`

#### Language Producers

<!-- info: What further information do we have on the language producers? -->
<!-- scope: microscope -->
Language producers were English speakers in U.S., Canada, U.K and Australia.

#### Topics Covered

<!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
<!-- scope: periscope -->
No

#### Data Validation

<!-- info: Was the text validated by a different worker or a data curator? -->
<!-- scope: telescope -->
validated by crowdworker

#### Was Data Filtered?

<!-- info: Were text instances selected or filtered? -->
<!-- scope: telescope -->
algorithmically

#### Filter Criteria

<!-- info: What were the selection criteria? -->
<!-- scope: microscope -->
Adversarial filtering algorithm as described in the paper: https://arxiv.org/abs/1908.05739


### Structured Annotations

#### Additional Annotations?

<!-- quick -->
<!-- info: Does the dataset have additional annotations for each instance? -->
<!-- scope: telescope -->
automatically created

#### Annotation Service?

<!-- info: Was an annotation service used? -->
<!-- scope: telescope -->
no

#### Annotation Values

<!-- info: Purpose and values for each annotation -->
<!-- scope: microscope -->
Each observation is associated with a list of COMET (https://arxiv.org/abs/1906.05317) inferences.

#### Any Quality Control?

<!-- info: Quality control measures? -->
<!-- scope: telescope -->
none


### Consent

#### Any Consent Policy?

<!-- info: Was there a consent policy involved when gathering the data? -->
<!-- scope: telescope -->
no


### Private Identifying Information (PII)

#### Contains PII?

<!-- quick -->
<!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
<!-- scope: telescope -->
no PII

#### Justification for no PII

<!-- info: Provide a justification for selecting `no PII` above. -->
<!-- scope: periscope -->
The dataset contains day-to-day events. It does not contain names, emails, addresses etc. 


### Maintenance

#### Any Maintenance Plan?

<!-- info: Does the original dataset have a maintenance plan? -->
<!-- scope: telescope -->
no



## Broader Social Context

### Previous Work on the Social Impact of the Dataset

#### Usage of Models based on the Data

<!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
<!-- scope: telescope -->
no


### Impact on Under-Served Communities

#### Addresses needs of underserved Communities?

<!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
<!-- scope: telescope -->
no


### Discussion of Biases

#### Any Documented Social Biases?

<!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
<!-- scope: telescope -->
no



## Considerations for Using the Data

### PII Risks and Liability

#### Potential PII Risk

<!-- info: Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset. -->
<!-- scope: microscope -->
None


### Licenses

#### Copyright Restrictions on the Dataset

<!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
<!-- scope: periscope -->
`public domain`

#### Copyright Restrictions on the Language Data

<!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
<!-- scope: periscope -->
`public domain`


### Known Technical Limitations