File size: 3,844 Bytes
fbcd8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
P A T T R :  P A T E N T  T R A N S L A T I O N  R E S O U R C E

Download link: 	http://www.cl.uni-heidelberg.de/statnlpgroup/pattr/
Author: 	Katharina Wäschle (waeschle@cl.uni-heidelberg.de)
Date: 		11/12/2013

PatTR is a parallel corpus extracted from documents in the MAREC patent
collection [1]. The second release contains 18 million English-French
parallel sentences collected from all patent text sections.


TERMS OF USE

 PatTR is licensed under a Creative Commons Attribution-NonCommercial-
 ShareAlike 3.0 Unported License (see LICENSE). Please cite
 Wäschle & Riezler (2012b), if you use the corpus in your work.

1. FILES

	abstract/
		pattr.de-en.abstract.en
		pattr.de-en.abstract.fr
		pattr.de-en.abstract.meta

	claims/
		pattr.de-en.claims.en
		pattr.de-en.claims.fr
		pattr.de-en.claims.meta

	description/
		pattr.de-en.description.en
		pattr.de-en.description.en.meta
		pattr.de-en.description.fr
		pattr.de-en.description.fr.meta

	title/
		pattr.de-en.title.en
		pattr.de-en.title.fr
		pattr.de-en.title.meta

 *.en files contain English sentences, *.fr files corresponding French
 sentences. *.meta contain information about the document the 
 sentences were extracted from as tab-separated values:

	- document id
	- patent family id
	- publication data
	- IPC up to subclass level, comma-separated

 For the description data, where the bitext has been collected from two
 separate documents, there is a metadata file for each of the source
 documents (*.fr.meta for the French document from the EPO corpus,
 *.en.meta for the English document from the USPTO corpus).

2. DATA

 The corpus is split into files according to the text sections of a
 patent document: title, abstract, claims and description.
 Parallel data from the title, abstract and claims sections were
 extracted from documents belonging to the European Patent Office
 (EPO) [2] and the World Intellectual Property Organization (WIPO) [3]
 corpora in MAREC. Both resources feature multilingual documents that
 contain for example both an English and a French abstract.

 Since there are no multilingual descriptions, data from this section
 were collected by exploiting patent families to align French documents
 from the EPO corpus to English documents from the United States Patent
 and Trademark Office (USPTO) [4] corpus, following Utiyama and Isahara
 (2007).

 All sections were sentence-aligned using the Gargantua aligner [5].
 Preprocessing was done automatically. Sentence boundaries were detected
 using the Europarl processing tools [6].

4. STATISTICS

 Section     Sentences    en tokens     fr tokens

 title        2,504,772    19,458,540    23,605,412
 abstract     3,697,670   130,801,982   144,591,792
 claims       6,966,851   422,504,392   468,029,948
 description  5,594,745   200,043,688   204,449,266

 total       18,764,038   772,808,602   840,676,418

ACKNOWLEDGEMENTS

 The work was in part supported by the "Cross-language Learning-to-Rank
 for Patent Retrieval" project funded by the Deutsche
 Forschungsgemeinschaft (DFG).

PUBLICATIONS

 Wäschle, K. and Riezler, S. (2012a). Structural and Topical Dimensions
 in Multi-Task Patent Translation. Proceedings of the 13th Conference of
 the European Chapter of the Association for Computational Linguistics
 (EACL 2012), Avignon, France. 
 http://www.aclweb.org/anthology-new/E/E12/E12-1083.pdf

 Wäschle, K. and Riezler, S. (2012b). Analyzing Parallelism and Domain
 Similarities in the MAREC Patent Corpus. Multidisciplinary Information
 Retrieval, pp. 12-27.
 http://www.cl.uni-heidelberg.de/~riezler/publications/papers/IRF2012.pdf

LINKS
     1. http://www.ir-facility.org/prototypes/marec
     2. http://www.epo.org
     3. http://www.wipo.int
     4. http://www.uspto.gov
     5. http://sourceforge.net/projects/gargantua
     6. http://www.statmt.org/europarl