from transformers import AutoTokenizer, FlaxBertForSequenceClassification import datasets import jax import jax.numpy as jnp import time from flax.training.common_utils import shard from jax import pmap def pred_fn(inputs): outputs = model(**inputs) return jax.nn.sigmoid(outputs.logits) def get_toxicity(batch, batch_size): num_examples = len(batch["text"]) inputs = tokenizer( batch["text"], return_tensors="np", truncation=True, padding="max_length", max_length=512, ) inputs = shard( { k: jnp.pad(jnp.array(v), ((0, batch_size - num_examples), (0, 0))) for k, v in inputs.items() } ) preds = p_pred(inputs) preds = preds.reshape(-1, preds.shape[-1])[:num_examples] for k, v in model.config.id2label.items(): batch[v] = preds[:, k].tolist() return batch p_pred = pmap(pred_fn, "inputs") tokenizer = AutoTokenizer.from_pretrained("TurkuNLP/bert-large-finnish-cased-toxicity") model = FlaxBertForSequenceClassification.from_pretrained( "TurkuNLP/bert-large-finnish-cased-toxicity", from_pt=True, dtype=jnp.bfloat16 ) dataset = datasets.load_from_disk("/researchdisk/mc4_3.1.0_fi_cleaned") BATCH_SIZE = 8192 dataset = dataset.map( get_toxicity, num_proc=1, batched=True, batch_size=BATCH_SIZE, fn_kwargs={"batch_size": BATCH_SIZE}, ) print(dataset) # SAVE DATASET dataset.save_to_disk( "/researchdisk/mc4_3.1.0_fi_cleaned_dataset_toxicity_labels", num_proc=32 )