aapot
commited on
Commit
·
58ed682
1
Parent(s):
f71d1c2
Add toxicity calculation script
Browse files- calculate_toxicity_labels.py +61 -0
calculate_toxicity_labels.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, FlaxBertForSequenceClassification
|
2 |
+
import datasets
|
3 |
+
import jax
|
4 |
+
import jax.numpy as jnp
|
5 |
+
import time
|
6 |
+
from flax.training.common_utils import shard
|
7 |
+
from jax import pmap
|
8 |
+
|
9 |
+
|
10 |
+
def pred_fn(inputs):
|
11 |
+
outputs = model(**inputs)
|
12 |
+
return jax.nn.sigmoid(outputs.logits)
|
13 |
+
|
14 |
+
|
15 |
+
def get_toxicity(batch, batch_size):
|
16 |
+
num_examples = len(batch["text"])
|
17 |
+
inputs = tokenizer(
|
18 |
+
batch["text"],
|
19 |
+
return_tensors="np",
|
20 |
+
truncation=True,
|
21 |
+
padding="max_length",
|
22 |
+
max_length=512,
|
23 |
+
)
|
24 |
+
|
25 |
+
inputs = shard(
|
26 |
+
{
|
27 |
+
k: jnp.pad(jnp.array(v), ((0, batch_size - num_examples), (0, 0)))
|
28 |
+
for k, v in inputs.items()
|
29 |
+
}
|
30 |
+
)
|
31 |
+
preds = p_pred(inputs)
|
32 |
+
preds = preds.reshape(-1, preds.shape[-1])[:num_examples]
|
33 |
+
for k, v in model.config.id2label.items():
|
34 |
+
batch[v] = preds[:, k].tolist()
|
35 |
+
return batch
|
36 |
+
|
37 |
+
|
38 |
+
p_pred = pmap(pred_fn, "inputs")
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("TurkuNLP/bert-large-finnish-cased-toxicity")
|
41 |
+
model = FlaxBertForSequenceClassification.from_pretrained(
|
42 |
+
"TurkuNLP/bert-large-finnish-cased-toxicity", from_pt=True, dtype=jnp.bfloat16
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
dataset = datasets.load_from_disk("/researchdisk/mc4_3.1.0_fi_cleaned")
|
47 |
+
|
48 |
+
BATCH_SIZE = 8192
|
49 |
+
dataset = dataset.map(
|
50 |
+
get_toxicity,
|
51 |
+
num_proc=1,
|
52 |
+
batched=True,
|
53 |
+
batch_size=BATCH_SIZE,
|
54 |
+
fn_kwargs={"batch_size": BATCH_SIZE},
|
55 |
+
)
|
56 |
+
print(dataset)
|
57 |
+
|
58 |
+
# SAVE DATASET
|
59 |
+
dataset.save_to_disk(
|
60 |
+
"/researchdisk/mc4_3.1.0_fi_cleaned_dataset_toxicity_labels", num_proc=32
|
61 |
+
)
|