Datasets:
Formats:
parquet
Size:
10K - 100K
File size: 6,012 Bytes
a3e8422 6eaee02 a3e8422 6eaee02 71ed5df 6eaee02 71ed5df a3e8422 6eaee02 71ed5df 6eaee02 71ed5df 6eaee02 3cb5744 6eaee02 71ed5df 3cb5744 71ed5df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
---
dataset_info:
features:
- name: images
dtype: image
- name: metadata
struct:
- name: corners
sequence:
sequence: float64
- name: tile_coords
sequence: int64
- name: tile_metadata
struct:
- name: bbox
sequence: float64
- name: crs
dtype: string
- name: edge_in_meters
dtype: int64
- name: resolution
dtype: int64
- name: transformed_trees
list:
- name: latitude
dtype: float64
- name: longitude
dtype: float64
- name: radius
dtype: int64
- name: x
dtype: int64
- name: 'y'
dtype: int64
- name: trees
list:
- name: area
dtype: int64
- name: e
dtype: float64
- name: height
dtype: float64
- name: latitude
dtype: float64
- name: longitude
dtype: float64
- name: volume
dtype: float64
- name: results
dtype: image
splits:
- name: train
num_bytes: 10822236808.976
num_examples: 16848
download_size: 11417810326
dataset_size: 10822236808.976
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- geography
- trees
- tree
- satellite
- spacial
- geospatial
- city
- wroclaw
size_categories:
- 10K<n<100K
pretty_name: Satellite Trees of Wroclaw city 2022
---
# Dataset Card for Satellite Trees Wroclaw 2022
The Satellite Trees Wroclaw 2022 dataset contains high-resolution satellite imagery and metadata of trees in Wroclaw, Poland, collected in 2022. The dataset is organized into three main directories: `images`, `metadata`, and `results`.
- `images/`: Contains orthophotomaps of different regions in Wroclaw.
- `metadata/`: Contains JSON files with metadata for each tile, including information about the trees in the corresponding satellite images.
- `results/`: Contains examples of results with trees painted on each image. (using the center of tree and radius derived from area)
This dataset can be used for various tasks such as tree detection, classification, and other geospatial tasks!
## Dataset Details
### Metadata Description
Each JSON file in the `metadata/` directory contains information about the trees in the corresponding satellite image tile.
Structure of json object:
- `tile_coords`: list of x, y, z of tile from specified orthophotomaps.
- `tile_metadata`:
- `bbox`: bounding box of a tile "bbox = left,bottom,right,top"
- `resolution`: resulution in pixels of image
- `crs`: coordinate reference system
- `edge_in_meters`: how many meters does the edge of tile has.
- `corners`: list of corners of a tile in order: left-bottom, left-top, right-top, right-bottom. [Longitute, Latitude]
- `trees`: list of tree details from specified source
- `height`: Height of the tree.
- `e`: Eccentricity of the tree. (not confirmed!)
- `volume`: Volume of the tree. m^3
- `area`: Area covered by the tree. m^2
- `latitude`: Latitude coordinate of the tree.
- `longitude`: Longitude coordinate of the tree.
- `transformed_trees`: list of trees after transformation to image space in pixels with radius calculated from area.
- `latitude`: Latitude coordinate of the tree.
- `longitude`: Longitude coordinate of the tree.
- `x`: X-coordinate in the image space.
- `y`: Y-coordinate in the image space.
- `radius`: Radius of the tree in pixels, calculated from the area.
### Metadata Example
```json
{
"tile_coords": [
143378,
87608,
18
],
"tile_metadata": {
"bbox": [
16.89971923828125,
51.13024583390033,
16.901092529296875,
51.131107637580136
],
"resolution": 1024,
"crs": "CRS:84",
"edge_in_meters": 96
},
"corners": [
[
16.89971923828125,
51.13024583390033
],
[
16.901092529296875,
51.13024583390033
],
[
16.901092529296875,
51.131107637580136
],
[
16.89971923828125,
51.131107637580136
]
],
"trees": [
{
"height": 8.05,
"e": 1.2,
"volume": 239.54,
"area": 27,
"latitude": 51.13105191475769,
"longitude": 16.89974462238265
},
{
"height": 9.49,
"e": 1.27,
"volume": 311.35,
"area": 62,
"latitude": 51.13101159452683,
"longitude": 16.899798270669734
},
...
],
"transformed_trees": [
{
"latitude": 51.13105191475769,
"longitude": 16.89974462238265,
"x": 18,
"y": 66,
"radius": 31
},
{
"latitude": 51.13101159452683,
"longitude": 16.899798270669734,
"x": 58,
"y": 114,
"radius": 47
},
...
]
}
```
Of course you can extract more info about trees and place them into the image by iterating through the original trees list and modifying the transformed one.
### Dataset Sources
- **Repository:** [Code Repository](https://github.com/Filipstrozik/spatial-data)
## Dataset Creation
Dataset was generated by iterating the maximum possible zoom of tile for chosen orthophotomaps (zoom: 18) in x and y directions.
We downloaded each tile as an image with 1024x1024 resolution. We calculated the lat long coordinates for futher calculations.
After having corners of tile we could get trees details from public api. We had to make some transformations to be able to draw trees on the images.
### Annotation process
We believe that ground truth annotations are legit. (More inside github repository)
[GIS Wroclaw](https://geoportal.wroclaw.pl/mapy/ortofoto/)
[Trees data](https://mapadrzew.com/)
# Authors
- Filip Strózik
- Dawid Wolkiewicz
- Izabela Majchrowska |