File size: 7,113 Bytes
36c1469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
 
 
 
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
94862e5
e05028c
36c1469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c5e61
36c1469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
annotations_creators:
  - machine-generated
task_categories:
  - automatic-speech-recognition
  - text-to-speech
language:
  - en
  - bg
  - hr
  - cs
  - da
  - nl
  - et
  - fi
  - fr
  - de
  - el
  - hu
  - ga
  - it
  - lv
  - lt
  - mt
  - pl
  - pt
  - ro
  - sk
  - sl
  - es
  - sv
language_creators:
  - found
modality:
  - text
  - audio
multilinguality:
  - multilingual
pretty_name: MOSEL
license: cc-by-4.0
tags:
  - speech
  - speech-to-text
  - open-source
  - whisper
configs:
  - config_name: bg
    data_files:
      - split: train_voxpopuli
        path: bg/voxpopuli*
  - config_name: cs
    data_files:
      - split: train_voxpopuli
        path: cs/voxpopuli*
  - config_name: da
    data_files:
      - split: train_voxpopuli
        path: da/voxpopuli*
  - config_name: de
    data_files:
      - split: train_voxpopuli
        path: de/voxpopuli*
  - config_name: el
    data_files:
      - split: train_voxpopuli
        path: el/voxpopuli*
  - config_name: en
    data_files:
      - split: train_voxpopuli
        path: en/voxpopuli*
      - split: train_librilight
        path: en/librilight*
  - config_name: es
    data_files:
      - split: train_voxpopuli
        path: es/voxpopuli*
  - config_name: et
    data_files:
      - split: train_voxpopuli
        path: et/voxpopuli*
  - config_name: fi
    data_files:
      - split: train_voxpopuli
        path: fi/voxpopuli*
  - config_name: fr
    data_files:
      - split: train_voxpopuli
        path: fr/voxpopuli*
  - config_name: hr
    data_files:
      - split: train_voxpopuli
        path: hr/voxpopuli*
  - config_name: hu
    data_files:
      - split: train_voxpopuli
        path: hu/voxpopuli*
  - config_name: it
    data_files:
      - split: train_voxpopuli
        path: it/voxpopuli*
  - config_name: lt
    data_files:
      - split: train_voxpopuli
        path: lt/voxpopuli*
  - config_name: lv
    data_files:
      - split: train_voxpopuli
        path: lv/voxpopuli*
  - config_name: mt
    data_files:
      - split: train_voxpopuli
        path: mt/voxpopuli*
  - config_name: nl
    data_files:
      - split: train_voxpopuli
        path: nl/voxpopuli*
  - config_name: pl
    data_files:
      - split: train_voxpopuli
        path: pl/voxpopuli*
  - config_name: pt
    data_files:
      - split: train_voxpopuli
        path: pt/voxpopuli*  
  - config_name: ro
    data_files:
      - split: train_voxpopuli
        path: ro/voxpopuli*
  - config_name: sk
    data_files:
      - split: train_voxpopuli
        path: sk/voxpopuli*
  - config_name: sl
    data_files:
      - split: train_voxpopuli
        path: sl/voxpopuli*
  - config_name: sv
    data_files:
      - split: train_voxpopuli
        path: sv/voxpopuli*
---

<img src="./mosel-logo-transparent.png" align="center" width="100%">

### Dataset Description, Collection, and Source

The MOSEL corpus is a multilingual dataset collection including up to 950K hours of open-source speech recordings covering the 24 official languages of the European Union. We collect data by surveying labeled and unlabeled speech corpora under open-source compliant licenses.
In particular, MOSEL includes the automatic transcripts of 441k hours of unlabeled speech from VoxPopuli and LibriLight. The data is transcribed using [Whisper large v3](https://huggingface.co/openai/whisper-large-v3).
Whisper is released under the OS Apache 2.0 License which allows releasing the generated content under any license. Since LibriLight, differently from VoxPopuli, contains segments longer than Whisper's maximum duration limit of 30sec, we split them into chunks of up to 30sec.

- **Curated by:** Marco Gaido, Sara Papi, Luisa Bentivogli, Alessio Brutti, Mauro Cettolo, Roberto Gretter, Marco Matassoni, Mohamed Nabih, and Matteo Negri
- **Funded by:** FAIR, Meetween, and CINECA
- **Shared by:** Fondazione Bruno Kessler

### License
- CC-BY-4.0

### Dataset Sources

- **Collection Repository:** [MOSEL](https://github.com/hlt-mt/mosel)
- **Paper:** [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](http://arxiv.org/abs/2410.01036)

## Dataset Structure

### Data Config
The dataset is split into folders corresponding to the languages using the [2-letters ISO codes](https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes), one for each language. Within each folder, a split for each psuedo-labeled dataset is provided. 

### Data Field
`id`: alphanumeric identifier for the segment

`language`: extended language (e.g., "english")

`text`: the content of the psuedo label

`hall_repeated_ngrams`: True/False - indicates the repetition of an *n*-gram in `text` for a minimum number of times; for *n* in 1 to 2, the threshold is 4, for *n* in 3 to 5, it is 3 

`hall_long_word`: True/False - indicates the presence of a word of at least 40 characters in `text`

`hall_frequent_single_word`: True/False - indicates that `text` consists of only one word which is the most frequent inside the whole text

## Dataset Statistics (in hours)

| Language (LangID) | Labeled | Unlabeled | Total |
|--------|--------|--------|-------|
| Bulgarian (bg)     | 111    | 17609  | 17720 |
| Croatian (hr)     | 55     | 8106   | 8161  |
| Czech (cs)     | 591    | 18705  | 19296 |
| Danish (da)     | 20     | 13600  | 13620 |
| Dutch (nl)     | 3395   | 19014  | 22409 |
| English (en)     | 437239 | 84704  | 521943|
| Estonian (et)     | 60     | 10604  | 10664 |
| Finnish (fi)     | 64     | 14200  | 14264 |
| French (fr)     | 26984  | 22896  | 49880 |
| German (de)     | 9236   | 23228  | 32464 |
| Greek (el)     | 35     | 17703  | 17738 |
| Hungarian (hu)     | 189    | 17701  | 17890 |
| Irish (ga)     | 17     | 0      | 17    |
| Italian (it)     | 3756   | 21933  | 25689 |
| Latvian (lv)     | 173    | 13100  | 13273 |
| Lithuanian (lt)     | 36     | 14400  | 14436 |
| Maltese (mt)     | 19     | 9100   | 9119  |
| Polish (pl)     | 510    | 21207  | 21717 |
| Portuguese (pt)     | 5492   | 17526  | 23018 |
| Romanian (ro)     | 121    | 17906  | 18021 |
| Slovak (sk)     | 61     | 12100  | 12161 |
| Slovenian (sl)     | 32     | 11300  | 11332 |
| Spanish (es)     | 17471  | 21526  | 38997 |
| Swedish (sv)     | 58     | 16300  | 16358 |
| Total  | 505725 | 444467 | 950192|


## Dataset Creation
To reproduce the dataset creation, please refer to the [MOSEL README in the fbk-llm](https://github.com/hlt-mt/fbk-llm) repository.


## Citation
Release 1.0:
```
@inproceedings{mosel,
  title = {{MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages}},
  author = {Marco Gaido and Sara Papi and Luisa Bentivogli and Alessio Brutti and Mauro Cettolo and Roberto Gretter and Marco Matassoni and Mohamed Nabihand Matteo Negri},
  booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
  month = nov,
  year = "2024",
  address = "Miami, United States",
  publisher = "Association for Computational Linguistics",
}
```

## Dataset Card Contact
[@spapi](https://huggingface.co/spapi)