Exr0n commited on
Commit
64ae001
·
verified ·
1 Parent(s): eaed807

include training pairs (with sampled negative examples)

Browse files
link_synonyms-2018-thresh_10.csv → 2018thresh10corpus.csv RENAMED
File without changes
2018thresh10dev.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53c34495315acde41ca549eaa1ad02726e79c6f2aad46b77f84b11fb2459e666
3
+ size 55066171
2018thresh10test.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8089f88487de91ed778ecfed210f0f13488e3f670404c210ebd72ee3f1b268de
3
+ size 36685709
2018thresh10train.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2618a03dd0278017b987759f723cc7525d19ddc3c79247a187bcf0a2601663ed
3
+ size 274277317
link_synonyms-2018-thresh_20.csv → 2018thresh20corpus.csv RENAMED
File without changes
2018thresh20dev.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06c9b05cc92746020c8379d55d8738ca6923129ca8a15766df1687625d73cb30
3
+ size 39942761
2018thresh20test.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feea8c3d46deb539e8004bc5193a15509cb3b352d93431dbe5131a5e4356b9d9
3
+ size 26669268
2018thresh20train.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebd8c98658d16de99412d9f52d3b98409c0bcefd36409378fe303d5dd61c9eba
3
+ size 198305773
link_synonyms-2018-thresh_5.csv → 2018thresh5corpus.csv RENAMED
File without changes
2018thresh5dev.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf2e6b8bf0b091f3cbcc3cfbdd831989e35be1f8331de0a2f0d217e574c189c4
3
+ size 71983269
2018thresh5test.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f654c09ae5f8ffbb80ddcb79c2be63e37b8ae184ef99c9555fb1c1625fedf1b7
3
+ size 48195090
2018thresh5train.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:866bad7a6fc1fcd477f87be9b856d289e47547878fcaeb000d1dba768a7b7468
3
+ size 359260993
generate_wes_data.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ import pandas as pd
3
+ import numpy as np
4
+ from tqdm import tqdm
5
+
6
+ from collections import defaultdict
7
+ from operator import itemgetter as ig
8
+ from itertools import islice, chain, repeat
9
+ from random import sample, choice, shuffle
10
+ from gc import collect
11
+
12
+ def generate_splits(subset, split=[0.75, 0.15, 0.1]):
13
+ assert abs(sum(split) - 1.0) < 0.0001
14
+ # get the data in dictionary form
15
+ groups = defaultdict(list)
16
+ ds = load_dataset('Exr0n/wiki-entity-similarity', subset, split='train')
17
+ ds = list(tqdm(ds, total=len(ds)))
18
+ for article, link in tqdm(map(ig('article', 'link_text'), ds), total=len(ds)):
19
+ groups[article].append(link)
20
+ del ds
21
+
22
+ # greedily allocate splits
23
+ order = sorted(groups.keys(), reverse=True, key=lambda e: groups[e])
24
+ splits = [[] for _ in split]
25
+ sizes = [0.001] * len(split) # avoid div zero error
26
+ for group in order:
27
+ impoverished = np.argmax([ s - (x/sum(sizes)) for x, s in zip(sizes, split) ])
28
+ splits[impoverished].append(group)
29
+ sizes[impoverished] += len(groups[group])
30
+
31
+ sizes = [ int(x) for x in sizes ]
32
+ print('final sizes', sizes, [x/sum(sizes) for x in sizes])
33
+
34
+ # generate positive examples
35
+ ret = [ [[(k, t) for t in groups[k]] for k in keys] for keys in splits ]
36
+
37
+ # generate negative examples randomly (TODO: probably a more elegant swapping soln)
38
+ for i, keys in enumerate(splits):
39
+ for key in keys:
40
+ try:
41
+ got = sample(keys, len(groups[key])+1)
42
+ ret[i].append(
43
+ [(key, choice(groups[k])) for k in got if k != key]
44
+ [:len(groups[key])]
45
+ )
46
+ except ValueError:
47
+ raise ValueError("well frick one group is bigger than all the others combined. try sampling one at a time")
48
+
49
+ collect()
50
+ return [(chain(*s), chain(repeat(1, z), repeat(0, z))) for z, s in zip(sizes, ret)]
51
+
52
+
53
+ if __name__ == '__main__':
54
+ for size in [5, 10, 20]:
55
+ x = generate_splits(subset='2018thresh' + str(size) + 'corpus')
56
+
57
+ for (data, labels), split in zip(x, ['train', 'dev', 'test']):
58
+ articles, lts = list(zip(*data))
59
+ df = pd.DataFrame({ 'article': articles, 'link_text': lts, 'is_same': list(labels) })
60
+ df = df.sample(frac=1).reset_index(drop=True)
61
+ df.to_csv('2018thresh' + str(size) + split + '.csv', index=False)
62
+ # print(df.head(30), df.tail(30))
63
+
64
+ # tests
65
+ # for data, labels in x[2:]:
66
+ # data = list(data)
67
+ # labels = list(labels)
68
+ #
69
+ # assert sum(labels) * 2 == len(labels)
70
+ # num = sum(labels)
71
+ #
72
+ # before = [ a for a, _ in data[:num] ]
73
+ # after = [ a for a, _ in data[num:] ]
74
+ # assert before == after
75
+ #
76
+ # print(data[num:])
wiki-entity-similarity.py CHANGED
@@ -12,33 +12,67 @@ _CITE = '''\
12
  }
13
  '''
14
 
 
 
15
  @dataclass
16
  class WikiEntitySimilarityConfig(datasets.BuilderConfig):
17
  """BuilderConfig for CSV."""
 
 
18
  threshhold: int = None
19
- path: str = None
20
 
21
  class WikiEntitySimilarity(datasets.GeneratorBasedBuilder):
22
  """WES: Learning semantic similarity from 6M names for 1M entities"""
23
  BUILDER_CONFIG_CLASS = WikiEntitySimilarityConfig
24
  BUILDER_CONFIGS = [
25
  WikiEntitySimilarityConfig(
26
- name='2018thresh5',
27
- description='min 5 inbound links, lowest quality',
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  threshhold=5,
29
- path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_5.csv"
30
  ),
31
  WikiEntitySimilarityConfig(
32
- name='2018thresh10',
33
- description='min 10 inbound links, medium quality',
 
 
34
  threshhold=10,
35
- path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_10.csv"
36
  ),
37
  WikiEntitySimilarityConfig(
38
- name='2018thresh20',
39
- description='min 20 inbound links, high quality',
 
 
40
  threshhold=20,
41
- path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_20.csv"
42
  ),
43
  ]
44
 
@@ -56,12 +90,25 @@ class WikiEntitySimilarity(datasets.GeneratorBasedBuilder):
56
  )
57
 
58
  def _split_generators(self, dl_manager):
59
- filepath = dl_manager.download(self.config.path)
60
- return [ datasets.SplitGenerator(name=datasets.Split.TRAIN,
61
- gen_kwargs={ 'filepath': filepath }) ]
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- def _generate_examples(self, filepath):
64
- with open(filepath, 'r') as rf:
65
  reader = csv.DictReader(rf)
66
  for i, row in enumerate(reader):
67
  yield i, row
 
12
  }
13
  '''
14
 
15
+ _HUGGINGFACE_REPO = "https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/"
16
+
17
  @dataclass
18
  class WikiEntitySimilarityConfig(datasets.BuilderConfig):
19
  """BuilderConfig for CSV."""
20
+ year: int = None
21
+ type: str = None
22
  threshhold: int = None
23
+ # path: str = None
24
 
25
  class WikiEntitySimilarity(datasets.GeneratorBasedBuilder):
26
  """WES: Learning semantic similarity from 6M names for 1M entities"""
27
  BUILDER_CONFIG_CLASS = WikiEntitySimilarityConfig
28
  BUILDER_CONFIGS = [
29
  WikiEntitySimilarityConfig(
30
+ name='2018thresh5corpus',
31
+ description='raw link corpus (all true): min 5 inbound links, lowest quality',
32
+ year=2018,
33
+ type='corpus',
34
+ threshhold=5,
35
+ # path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_5.csv"
36
+ ),
37
+ WikiEntitySimilarityConfig(
38
+ name='2018thresh10corpus',
39
+ description='raw link corpus (all true): min 10 inbound links, medium quality',
40
+ year=2018,
41
+ type='corpus',
42
+ threshhold=10,
43
+ # path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_10.csv"
44
+ ),
45
+ WikiEntitySimilarityConfig(
46
+ name='2018thresh20corpus',
47
+ description='raw link corpus (all true): min 20 inbound links, high quality',
48
+ year=2018,
49
+ type='corpus',
50
+ threshhold=20,
51
+ # path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_20.csv"
52
+ ),
53
+ WikiEntitySimilarityConfig(
54
+ name='2018thresh5pairs',
55
+ description='training pairs based on min 5 inbound links, lowest quality',
56
+ year=2018,
57
+ type='pairs',
58
  threshhold=5,
59
+ # path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/2018thresh5"
60
  ),
61
  WikiEntitySimilarityConfig(
62
+ name='2018thresh10pairs',
63
+ description='training pairs based on min 10 inbound links, medium quality',
64
+ year=2018,
65
+ type='pairs',
66
  threshhold=10,
67
+ # path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/2018thresh10"
68
  ),
69
  WikiEntitySimilarityConfig(
70
+ name='2018thresh20pairs',
71
+ description='training pairs based on min 20 inbound links, high quality',
72
+ year=2018,
73
+ type='pairs',
74
  threshhold=20,
75
+ # path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/2018thresh20"
76
  ),
77
  ]
78
 
 
90
  )
91
 
92
  def _split_generators(self, dl_manager):
93
+ path = _HUGGINGFACE_REPO + f"{self.config.year}thresh{self.config.threshhold}"
94
+ if self.config.type == 'corpus':
95
+ filepath = dl_manager.download(path + 'corpus.csv')
96
+ return [ datasets.SplitGenerator(name=datasets.Split.TRAIN,
97
+ gen_kwargs={ 'path': filepath }) ]
98
+ elif self.config.type == 'pairs':
99
+ ret = []
100
+ for n, e in zip(['train', 'dev', 'test'],
101
+ [datasets.Split.TRAIN,
102
+ datasets.Split.VALIDATION,
103
+ datasets.Split.TEST]):
104
+ fp = dl_manager.download(path + n + '.csv')
105
+ ret.append( datasets.SplitGenerator(name=e, gen_kwargs={ 'path': fp }) )
106
+ return ret
107
+ else:
108
+ raise ValueError(f"invalid dataset type '{self.config.type}', expected 'corpus' for raw links or 'pairs' for trainable pairs with negative examples")
109
 
110
+ def _generate_examples(self, path):
111
+ with open(path, 'r') as rf:
112
  reader = csv.DictReader(rf)
113
  for i, row in enumerate(reader):
114
  yield i, row