Datasets:
include training pairs (with sampled negative examples)
Browse files- link_synonyms-2018-thresh_10.csv → 2018thresh10corpus.csv +0 -0
- 2018thresh10dev.csv +3 -0
- 2018thresh10test.csv +3 -0
- 2018thresh10train.csv +3 -0
- link_synonyms-2018-thresh_20.csv → 2018thresh20corpus.csv +0 -0
- 2018thresh20dev.csv +3 -0
- 2018thresh20test.csv +3 -0
- 2018thresh20train.csv +3 -0
- link_synonyms-2018-thresh_5.csv → 2018thresh5corpus.csv +0 -0
- 2018thresh5dev.csv +3 -0
- 2018thresh5test.csv +3 -0
- 2018thresh5train.csv +3 -0
- generate_wes_data.py +76 -0
- wiki-entity-similarity.py +62 -15
link_synonyms-2018-thresh_10.csv → 2018thresh10corpus.csv
RENAMED
File without changes
|
2018thresh10dev.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53c34495315acde41ca549eaa1ad02726e79c6f2aad46b77f84b11fb2459e666
|
3 |
+
size 55066171
|
2018thresh10test.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8089f88487de91ed778ecfed210f0f13488e3f670404c210ebd72ee3f1b268de
|
3 |
+
size 36685709
|
2018thresh10train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2618a03dd0278017b987759f723cc7525d19ddc3c79247a187bcf0a2601663ed
|
3 |
+
size 274277317
|
link_synonyms-2018-thresh_20.csv → 2018thresh20corpus.csv
RENAMED
File without changes
|
2018thresh20dev.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06c9b05cc92746020c8379d55d8738ca6923129ca8a15766df1687625d73cb30
|
3 |
+
size 39942761
|
2018thresh20test.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:feea8c3d46deb539e8004bc5193a15509cb3b352d93431dbe5131a5e4356b9d9
|
3 |
+
size 26669268
|
2018thresh20train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebd8c98658d16de99412d9f52d3b98409c0bcefd36409378fe303d5dd61c9eba
|
3 |
+
size 198305773
|
link_synonyms-2018-thresh_5.csv → 2018thresh5corpus.csv
RENAMED
File without changes
|
2018thresh5dev.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf2e6b8bf0b091f3cbcc3cfbdd831989e35be1f8331de0a2f0d217e574c189c4
|
3 |
+
size 71983269
|
2018thresh5test.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f654c09ae5f8ffbb80ddcb79c2be63e37b8ae184ef99c9555fb1c1625fedf1b7
|
3 |
+
size 48195090
|
2018thresh5train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:866bad7a6fc1fcd477f87be9b856d289e47547878fcaeb000d1dba768a7b7468
|
3 |
+
size 359260993
|
generate_wes_data.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
from collections import defaultdict
|
7 |
+
from operator import itemgetter as ig
|
8 |
+
from itertools import islice, chain, repeat
|
9 |
+
from random import sample, choice, shuffle
|
10 |
+
from gc import collect
|
11 |
+
|
12 |
+
def generate_splits(subset, split=[0.75, 0.15, 0.1]):
|
13 |
+
assert abs(sum(split) - 1.0) < 0.0001
|
14 |
+
# get the data in dictionary form
|
15 |
+
groups = defaultdict(list)
|
16 |
+
ds = load_dataset('Exr0n/wiki-entity-similarity', subset, split='train')
|
17 |
+
ds = list(tqdm(ds, total=len(ds)))
|
18 |
+
for article, link in tqdm(map(ig('article', 'link_text'), ds), total=len(ds)):
|
19 |
+
groups[article].append(link)
|
20 |
+
del ds
|
21 |
+
|
22 |
+
# greedily allocate splits
|
23 |
+
order = sorted(groups.keys(), reverse=True, key=lambda e: groups[e])
|
24 |
+
splits = [[] for _ in split]
|
25 |
+
sizes = [0.001] * len(split) # avoid div zero error
|
26 |
+
for group in order:
|
27 |
+
impoverished = np.argmax([ s - (x/sum(sizes)) for x, s in zip(sizes, split) ])
|
28 |
+
splits[impoverished].append(group)
|
29 |
+
sizes[impoverished] += len(groups[group])
|
30 |
+
|
31 |
+
sizes = [ int(x) for x in sizes ]
|
32 |
+
print('final sizes', sizes, [x/sum(sizes) for x in sizes])
|
33 |
+
|
34 |
+
# generate positive examples
|
35 |
+
ret = [ [[(k, t) for t in groups[k]] for k in keys] for keys in splits ]
|
36 |
+
|
37 |
+
# generate negative examples randomly (TODO: probably a more elegant swapping soln)
|
38 |
+
for i, keys in enumerate(splits):
|
39 |
+
for key in keys:
|
40 |
+
try:
|
41 |
+
got = sample(keys, len(groups[key])+1)
|
42 |
+
ret[i].append(
|
43 |
+
[(key, choice(groups[k])) for k in got if k != key]
|
44 |
+
[:len(groups[key])]
|
45 |
+
)
|
46 |
+
except ValueError:
|
47 |
+
raise ValueError("well frick one group is bigger than all the others combined. try sampling one at a time")
|
48 |
+
|
49 |
+
collect()
|
50 |
+
return [(chain(*s), chain(repeat(1, z), repeat(0, z))) for z, s in zip(sizes, ret)]
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == '__main__':
|
54 |
+
for size in [5, 10, 20]:
|
55 |
+
x = generate_splits(subset='2018thresh' + str(size) + 'corpus')
|
56 |
+
|
57 |
+
for (data, labels), split in zip(x, ['train', 'dev', 'test']):
|
58 |
+
articles, lts = list(zip(*data))
|
59 |
+
df = pd.DataFrame({ 'article': articles, 'link_text': lts, 'is_same': list(labels) })
|
60 |
+
df = df.sample(frac=1).reset_index(drop=True)
|
61 |
+
df.to_csv('2018thresh' + str(size) + split + '.csv', index=False)
|
62 |
+
# print(df.head(30), df.tail(30))
|
63 |
+
|
64 |
+
# tests
|
65 |
+
# for data, labels in x[2:]:
|
66 |
+
# data = list(data)
|
67 |
+
# labels = list(labels)
|
68 |
+
#
|
69 |
+
# assert sum(labels) * 2 == len(labels)
|
70 |
+
# num = sum(labels)
|
71 |
+
#
|
72 |
+
# before = [ a for a, _ in data[:num] ]
|
73 |
+
# after = [ a for a, _ in data[num:] ]
|
74 |
+
# assert before == after
|
75 |
+
#
|
76 |
+
# print(data[num:])
|
wiki-entity-similarity.py
CHANGED
@@ -12,33 +12,67 @@ _CITE = '''\
|
|
12 |
}
|
13 |
'''
|
14 |
|
|
|
|
|
15 |
@dataclass
|
16 |
class WikiEntitySimilarityConfig(datasets.BuilderConfig):
|
17 |
"""BuilderConfig for CSV."""
|
|
|
|
|
18 |
threshhold: int = None
|
19 |
-
path: str = None
|
20 |
|
21 |
class WikiEntitySimilarity(datasets.GeneratorBasedBuilder):
|
22 |
"""WES: Learning semantic similarity from 6M names for 1M entities"""
|
23 |
BUILDER_CONFIG_CLASS = WikiEntitySimilarityConfig
|
24 |
BUILDER_CONFIGS = [
|
25 |
WikiEntitySimilarityConfig(
|
26 |
-
name='
|
27 |
-
description='min 5 inbound links, lowest quality',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
threshhold=5,
|
29 |
-
path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/
|
30 |
),
|
31 |
WikiEntitySimilarityConfig(
|
32 |
-
name='
|
33 |
-
description='min 10 inbound links, medium quality',
|
|
|
|
|
34 |
threshhold=10,
|
35 |
-
path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/
|
36 |
),
|
37 |
WikiEntitySimilarityConfig(
|
38 |
-
name='
|
39 |
-
description='min 20 inbound links, high quality',
|
|
|
|
|
40 |
threshhold=20,
|
41 |
-
path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/
|
42 |
),
|
43 |
]
|
44 |
|
@@ -56,12 +90,25 @@ class WikiEntitySimilarity(datasets.GeneratorBasedBuilder):
|
|
56 |
)
|
57 |
|
58 |
def _split_generators(self, dl_manager):
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
def _generate_examples(self,
|
64 |
-
with open(
|
65 |
reader = csv.DictReader(rf)
|
66 |
for i, row in enumerate(reader):
|
67 |
yield i, row
|
|
|
12 |
}
|
13 |
'''
|
14 |
|
15 |
+
_HUGGINGFACE_REPO = "https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/"
|
16 |
+
|
17 |
@dataclass
|
18 |
class WikiEntitySimilarityConfig(datasets.BuilderConfig):
|
19 |
"""BuilderConfig for CSV."""
|
20 |
+
year: int = None
|
21 |
+
type: str = None
|
22 |
threshhold: int = None
|
23 |
+
# path: str = None
|
24 |
|
25 |
class WikiEntitySimilarity(datasets.GeneratorBasedBuilder):
|
26 |
"""WES: Learning semantic similarity from 6M names for 1M entities"""
|
27 |
BUILDER_CONFIG_CLASS = WikiEntitySimilarityConfig
|
28 |
BUILDER_CONFIGS = [
|
29 |
WikiEntitySimilarityConfig(
|
30 |
+
name='2018thresh5corpus',
|
31 |
+
description='raw link corpus (all true): min 5 inbound links, lowest quality',
|
32 |
+
year=2018,
|
33 |
+
type='corpus',
|
34 |
+
threshhold=5,
|
35 |
+
# path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_5.csv"
|
36 |
+
),
|
37 |
+
WikiEntitySimilarityConfig(
|
38 |
+
name='2018thresh10corpus',
|
39 |
+
description='raw link corpus (all true): min 10 inbound links, medium quality',
|
40 |
+
year=2018,
|
41 |
+
type='corpus',
|
42 |
+
threshhold=10,
|
43 |
+
# path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_10.csv"
|
44 |
+
),
|
45 |
+
WikiEntitySimilarityConfig(
|
46 |
+
name='2018thresh20corpus',
|
47 |
+
description='raw link corpus (all true): min 20 inbound links, high quality',
|
48 |
+
year=2018,
|
49 |
+
type='corpus',
|
50 |
+
threshhold=20,
|
51 |
+
# path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_20.csv"
|
52 |
+
),
|
53 |
+
WikiEntitySimilarityConfig(
|
54 |
+
name='2018thresh5pairs',
|
55 |
+
description='training pairs based on min 5 inbound links, lowest quality',
|
56 |
+
year=2018,
|
57 |
+
type='pairs',
|
58 |
threshhold=5,
|
59 |
+
# path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/2018thresh5"
|
60 |
),
|
61 |
WikiEntitySimilarityConfig(
|
62 |
+
name='2018thresh10pairs',
|
63 |
+
description='training pairs based on min 10 inbound links, medium quality',
|
64 |
+
year=2018,
|
65 |
+
type='pairs',
|
66 |
threshhold=10,
|
67 |
+
# path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/2018thresh10"
|
68 |
),
|
69 |
WikiEntitySimilarityConfig(
|
70 |
+
name='2018thresh20pairs',
|
71 |
+
description='training pairs based on min 20 inbound links, high quality',
|
72 |
+
year=2018,
|
73 |
+
type='pairs',
|
74 |
threshhold=20,
|
75 |
+
# path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/2018thresh20"
|
76 |
),
|
77 |
]
|
78 |
|
|
|
90 |
)
|
91 |
|
92 |
def _split_generators(self, dl_manager):
|
93 |
+
path = _HUGGINGFACE_REPO + f"{self.config.year}thresh{self.config.threshhold}"
|
94 |
+
if self.config.type == 'corpus':
|
95 |
+
filepath = dl_manager.download(path + 'corpus.csv')
|
96 |
+
return [ datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
97 |
+
gen_kwargs={ 'path': filepath }) ]
|
98 |
+
elif self.config.type == 'pairs':
|
99 |
+
ret = []
|
100 |
+
for n, e in zip(['train', 'dev', 'test'],
|
101 |
+
[datasets.Split.TRAIN,
|
102 |
+
datasets.Split.VALIDATION,
|
103 |
+
datasets.Split.TEST]):
|
104 |
+
fp = dl_manager.download(path + n + '.csv')
|
105 |
+
ret.append( datasets.SplitGenerator(name=e, gen_kwargs={ 'path': fp }) )
|
106 |
+
return ret
|
107 |
+
else:
|
108 |
+
raise ValueError(f"invalid dataset type '{self.config.type}', expected 'corpus' for raw links or 'pairs' for trainable pairs with negative examples")
|
109 |
|
110 |
+
def _generate_examples(self, path):
|
111 |
+
with open(path, 'r') as rf:
|
112 |
reader = csv.DictReader(rf)
|
113 |
for i, row in enumerate(reader):
|
114 |
yield i, row
|