File size: 9,584 Bytes
9f45be4 5646b79 9f45be4 5646b79 3d4cb67 9f45be4 ffca7e4 5646b79 428ea48 ffca7e4 428ea48 ffca7e4 9f45be4 0e43d50 791e529 9f45be4 ffca7e4 a503a84 9f45be4 ffca7e4 5646b79 428ea48 ffca7e4 9f45be4 ffca7e4 a503a84 9f45be4 3d4cb67 5c85b3d 3d4cb67 c806698 3d4cb67 5c85b3d d2c8ed4 3d4cb67 d2c8ed4 3d4cb67 d2c8ed4 3d4cb67 d2c8ed4 3d4cb67 d2c8ed4 3d4cb67 f85f87b 3d4cb67 b9d07a5 3d4cb67 5c85b3d 4e63083 5c85b3d 1a7d0ee 5c85b3d 3db9c61 5c85b3d c806698 5c85b3d b9d07a5 7211e6c b6c9015 b9d07a5 5c85b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
language:
- en
license: apache-2.0
size_categories:
- 100K<n<1M
task_categories:
- reinforcement-learning
pretty_name: Procgen Benchmark Dataset
dataset_info:
- config_name: bigfish
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 3128341675
dataset_size: 28937250000
- config_name: bossfight
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 9295623234
dataset_size: 28937250000
- config_name: miner
features:
- name: observation
dtype:
array3_d:
shape:
- 64
- 64
- 3
dtype: uint8
- name: action
dtype: uint8
- name: reward
dtype: float32
- name: done
dtype: bool
- name: truncated
dtype: bool
splits:
- name: train
num_bytes: 26043525000
num_examples: 900000
- name: test
num_bytes: 2893725000
num_examples: 100000
download_size: 1895918513
dataset_size: 28937250000
configs:
- config_name: bigfish
data_files:
- split: train
path: bigfish/train-*
- split: test
path: bigfish/test-*
- config_name: bossfight
data_files:
- split: train
path: bossfight/train-*
- split: test
path: bossfight/test-*
- config_name: miner
data_files:
- split: train
path: miner/train-*
- split: test
path: miner/test-*
tags:
- procgen
- bigfish
- benchmark
- openai
- bossfight
- caveflyer
- chaser
- climber
- dodgeball
- fruitbot
- heist
- jumper
- leaper
- maze
- miner
- ninja
- plunder
- starpilot
---
# Procgen Benchmark
This dataset contains expert trajectories generated by a [PPO](https://arxiv.org/abs/1707.06347) reinforcement learning agent trained on each of the 16 procedurally-generated gym environments from the [Procgen Benchmark](https://openai.com/index/procgen-benchmark/). The environments were created on `distribution_mode=easy` and with unlimited levels.
Disclaimer: This is not an official repository from OpenAI.
## Dataset Usage
Regular usage (for environment bigfish):
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="train")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bigfish", split="test")
```
Usage with PyTorch (for environment bossfight):
```python
from datasets import load_dataset
train_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="train").with_format("torch")
test_dataset = load_dataset("EpicPinkPenguin/procgen", name="bossfight", split="test").with_format("torch")
```
## Agent Performance
The PPO RL agent was trained for 50M steps on each environment and obtained the following final performance metrics.
| Environment | Return |
|:------------|:-------|
| bigfish | 32.77 |
| bossfight | 12.49 |
| caveflyer | xx.xx |
| chaser | xx.xx |
| climber | xx.xx |
| coinrun | xx.xx |
| dodgeball | xx.xx |
| fruitbot | xx.xx |
| heist | xx.xx |
| jumper | xx.xx |
| leaper | xx.xx |
| maze | xx.xx |
| miner | xx.xx |
| ninja | xx.xx |
| plunder | xx.xx |
| starpilot | xx.xx |
## Dataset Structure
### Data Instances
Each data instance represents a single step consisting of tuples of the form (observation, action, reward, done, truncated) = (o_t, a_t, r_{t+1}, done_{t+1}, trunc_{t+1}).
```json
{'action': 1,
'done': False,
'observation': [[[0, 166, 253],
[0, 174, 255],
[0, 170, 251],
[0, 191, 255],
[0, 191, 255],
[0, 221, 255],
[0, 243, 255],
[0, 248, 255],
[0, 243, 255],
[10, 239, 255],
[25, 255, 255],
[0, 241, 255],
[0, 235, 255],
[17, 240, 255],
[10, 243, 255],
[27, 253, 255],
[39, 255, 255],
[58, 255, 255],
[85, 255, 255],
[111, 255, 255],
[135, 255, 255],
[151, 255, 255],
[173, 255, 255],
...
[0, 0, 37],
[0, 0, 39]]],
'reward': 0.0,
'truncated': False}
```
### Data Fields
- `observation`: The current RGB observation from the environment.
- `action`: The action predicted by the agent for the current observation.
- `reward`: The received reward from stepping the environment with the current action.
- `done`: If the new observation is the start of a new episode. Obtained after stepping the environment with the current action.
- `truncated`: If the new observation is the start of a new episode due to truncation. Obtained after stepping the environment with the current action.
### Data Splits
The dataset is divided into a `train` (90%) and `test` (10%) split. Each environment-dataset has in sum 1M steps (data points).
## Dataset Creation
The dataset was created by training an RL agent with [PPO](https://arxiv.org/abs/1707.06347) for 50M steps in each environment. The trajectories where generated by taking the argmax action at each step, corresponding to taking the mode of the action distribution. Consequently the rollout policy is deterministic. The environments were created on `distribution_mode=easy` and with unlimited levels.
## Video Samples
Here is a collection of videos with the RGB observations from the dataset.
| Environment | Observation |
|:------------|:------------|
| bigfish | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FlHQXBqLdoWicXlt68I9QX.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| bossfight | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FLPoafGi4YBWqqkuFlEN_l.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| caveflyer | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FXVqRwu_9yfX4ECQc4At4G.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| chaser | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FFIKVv48SThqiC1Z2PYQ7U.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| climber | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FXJQlA7IyF9_gwUiw-FkND.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| coinrun | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FUcv3HZttewMRQzTL8r_Tw.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| dodgeball | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2F5HetbKuXBpO-v1jcVyLTU.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| fruitbot | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FzKCyxXvauXjUac-5kEAWz.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| heist | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FAdZ6XNmUN5_00BKd9BN8R.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| jumper | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2Fs5k31gWK2Vc6Lp6QVzQXA.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| leaper | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2F_hDMocxjmzutc0t5FfoTX.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| maze | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FuhNdDPuNhZpxVns91Ba-9.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| miner | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FElpJ8l2WHJGrprZ3-giHU.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| ninja | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2Fb9i-fb2Twh8XmBBNf2DRG.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| plunder | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FJPeGNOVzrotuYUjfzZj40.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
| starpilot | <video controls autoplay loop src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F633c1daf31c06121a58f2df9%2FwY9lZgkw5tor19hCWmm6A.mp4%26quot%3B%3C%2Fspan%3E%26gt%3B%3C%2Fspan%3E%3C%2Fspan%3E%3Cspan class="language-xml"></video> |
## Procgen Benchmark
The [Procgen Benchmark](https://openai.com/index/procgen-benchmark/), released by OpenAI, consists of 16 procedurally-generated environments designed to measure how quickly reinforcement learning (RL) agents learn generalizable skills. It emphasizes experimental convenience, high diversity within and across environments, and is ideal for evaluating both sample efficiency and generalization. The benchmark allows for distinct training and test sets in each environment, making it a standard research platform for the OpenAI RL team. It aims to address the need for more diverse RL benchmarks compared to complex environments like Dota and StarCraft. |