# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Custom DROP dataset that, unlike HF, keeps all question-answer pairs # even if there are multiple types of answers for the same question. """DROP dataset.""" import json import os import datasets _CITATION = """\ @misc{dua2019drop, title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs}, author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner}, year={2019}, eprint={1903.00161}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ DROP is a QA dataset which tests comprehensive understanding of paragraphs. In this crowdsourced, adversarially-created, 96k question-answering benchmark, a system must resolve multiple references in a question, map them onto a paragraph, and perform discrete operations over them (such as addition, counting, or sorting). """ _HOMEPAGE = "https://allenai.org/data/drop" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" _URLS = { "drop": "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip", } _EMPTY_VALIDATED_ANSWER = [ { "number": "", "date": { "day": "", "month": "", "year": "", }, "spans": [], "worker_id": "", "hit_id": "", } ] class Drop(datasets.GeneratorBasedBuilder): """DROP is a QA dataset which tests comprehensive understanding of paragraphs.""" VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="drop", version=VERSION, description="The DROP dataset." ), ] def _info(self): features = datasets.Features( { "section_id": datasets.Value("string"), "passage": datasets.Value("string"), "question": datasets.Value("string"), "query_id": datasets.Value("string"), "answer": { "number": datasets.Value("string"), "date": { "day": datasets.Value("string"), "month": datasets.Value("string"), "year": datasets.Value("string"), }, "spans": datasets.features.Sequence(datasets.Value("string")), "worker_id": datasets.Value("string"), "hit_id": datasets.Value("string"), }, "validated_answers": datasets.features.Sequence( { "number": datasets.Value("string"), "date": { "day": datasets.Value("string"), "month": datasets.Value("string"), "year": datasets.Value("string"), }, "spans": datasets.features.Sequence(datasets.Value("string")), "worker_id": datasets.Value("string"), "hit_id": datasets.Value("string"), } ), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS[self.config.name] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join( data_dir, "drop_dataset", "drop_dataset_train.json" ), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join( data_dir, "drop_dataset", "drop_dataset_dev.json" ), "split": "validation", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): with open(filepath, encoding="utf-8") as f: data = json.load(f) key = 0 for section_id, example in data.items(): # Each example (passage) has multiple sub-question-answer pairs. for qa in example["qa_pairs"]: # Build answer. answer = qa["answer"] answer = { "number": answer["number"], "date": { "day": answer["date"].get("day", ""), "month": answer["date"].get("month", ""), "year": answer["date"].get("year", ""), }, "spans": answer["spans"], "worker_id": answer.get("worker_id", ""), "hit_id": answer.get("hit_id", ""), } validated_answers = [] if "validated_answers" in qa: for validated_answer in qa["validated_answers"]: va = { "number": validated_answer.get("number", ""), "date": { "day": validated_answer["date"].get("day", ""), "month": validated_answer["date"].get("month", ""), "year": validated_answer["date"].get("year", ""), }, "spans": validated_answer.get("spans", ""), "worker_id": validated_answer.get("worker_id", ""), "hit_id": validated_answer.get("hit_id", ""), } validated_answers.append(va) else: validated_answers = _EMPTY_VALIDATED_ANSWER yield key, { "section_id": section_id, "passage": example["passage"], "question": qa["question"], "query_id": qa["query_id"], "answer": answer, "validated_answers": validated_answers, } key += 1