Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 7,468 Bytes
2a2e17d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Custom DROP dataset that, unlike HF, keeps all question-answer pairs
# even if there are multiple types of answers for the same question.
"""DROP dataset."""


import json
import os

import datasets


_CITATION = """\
@misc{dua2019drop,
    title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
    author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
    year={2019},
    eprint={1903.00161},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
DROP is a QA dataset which tests comprehensive understanding of paragraphs. In
this crowdsourced, adversarially-created, 96k question-answering benchmark, a
system must resolve multiple references in a question, map them onto a paragraph,
and perform discrete operations over them (such as addition, counting, or sorting).
"""

_HOMEPAGE = "https://allenai.org/data/drop"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

_URLS = {
    "drop": "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip",
}

_EMPTY_VALIDATED_ANSWER = [
    {
        "number": "",
        "date": {
            "day": "",
            "month": "",
            "year": "",
        },
        "spans": [],
        "worker_id": "",
        "hit_id": "",
    }
]


class Drop(datasets.GeneratorBasedBuilder):
    """DROP is a QA dataset which tests comprehensive understanding of paragraphs."""

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="drop", version=VERSION, description="The DROP dataset."
        ),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "section_id": datasets.Value("string"),
                "passage": datasets.Value("string"),
                "question": datasets.Value("string"),
                "query_id": datasets.Value("string"),
                "answer": {
                    "number": datasets.Value("string"),
                    "date": {
                        "day": datasets.Value("string"),
                        "month": datasets.Value("string"),
                        "year": datasets.Value("string"),
                    },
                    "spans": datasets.features.Sequence(datasets.Value("string")),
                    "worker_id": datasets.Value("string"),
                    "hit_id": datasets.Value("string"),
                },
                "validated_answers": datasets.features.Sequence(
                    {
                        "number": datasets.Value("string"),
                        "date": {
                            "day": datasets.Value("string"),
                            "month": datasets.Value("string"),
                            "year": datasets.Value("string"),
                        },
                        "spans": datasets.features.Sequence(datasets.Value("string")),
                        "worker_id": datasets.Value("string"),
                        "hit_id": datasets.Value("string"),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(
                        data_dir, "drop_dataset", "drop_dataset_train.json"
                    ),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(
                        data_dir, "drop_dataset", "drop_dataset_dev.json"
                    ),
                    "split": "validation",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            data = json.load(f)
            key = 0
            for section_id, example in data.items():
                # Each example (passage) has multiple sub-question-answer pairs.
                for qa in example["qa_pairs"]:
                    # Build answer.
                    answer = qa["answer"]
                    answer = {
                        "number": answer["number"],
                        "date": {
                            "day": answer["date"].get("day", ""),
                            "month": answer["date"].get("month", ""),
                            "year": answer["date"].get("year", ""),
                        },
                        "spans": answer["spans"],
                        "worker_id": answer.get("worker_id", ""),
                        "hit_id": answer.get("hit_id", ""),
                    }
                    validated_answers = []
                    if "validated_answers" in qa:
                        for validated_answer in qa["validated_answers"]:
                            va = {
                                "number": validated_answer.get("number", ""),
                                "date": {
                                    "day": validated_answer["date"].get("day", ""),
                                    "month": validated_answer["date"].get("month", ""),
                                    "year": validated_answer["date"].get("year", ""),
                                },
                                "spans": validated_answer.get("spans", ""),
                                "worker_id": validated_answer.get("worker_id", ""),
                                "hit_id": validated_answer.get("hit_id", ""),
                            }
                            validated_answers.append(va)
                    else:
                        validated_answers = _EMPTY_VALIDATED_ANSWER
                    yield key, {
                        "section_id": section_id,
                        "passage": example["passage"],
                        "question": qa["question"],
                        "query_id": qa["query_id"],
                        "answer": answer,
                        "validated_answers": validated_answers,
                    }
                    key += 1