File size: 19,778 Bytes
a318cb0
 
6198f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a318cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6198f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a318cb0
 
 
 
 
 
 
9587f3f
 
 
 
 
8694702
 
61a1d07
8694702
61a1d07
8694702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33afb25
8694702
 
33afb25
8694702
 
 
 
 
 
 
 
61a1d07
a535051
61a1d07
a535051
61a1d07
a535051
 
9587f3f
a318cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9587f3f
a318cb0
 
 
 
 
 
 
 
 
 
 
9587f3f
a318cb0
 
 
 
 
 
9587f3f
a318cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
---

configs:
- config_name: arguana-corpus
  data_files:
  - split: train
    path: arguana/corpus/*
- config_name: arguana-queries
  data_files:
  - split: test
    path: arguana/queries/test.parquet
- config_name: arguana-qrels
  data_files:
  - split: test
    path: arguana/qrels/test.parquet
- config_name: bioasq-corpus
  data_files:
  - split: train
    path: bioasq/corpus/*
- config_name: bioasq-queries
  data_files:
  - split: train
    path: bioasq/queries/train.parquet
  - split: test
    path: bioasq/queries/test.parquet
- config_name: bioasq-qrels
  data_files:
  - split: train
    path: bioasq/qrels/train.parquet
  - split: test
    path: bioasq/qrels/test.parquet
- config_name: climate-fever-corpus
  data_files:
  - split: train
    path: climate-fever/corpus/*
- config_name: climate-fever-queries
  data_files:
  - split: test
    path: climate-fever/queries/test.parquet
- config_name: climate-fever-qrels
  data_files:
  - split: test
    path: climate-fever/qrels/test.parquet
- config_name: cqadupstack-android-corpus
  data_files:
  - split: train
    path: cqadupstack-android/corpus/*
- config_name: cqadupstack-android-queries
  data_files:
  - split: test
    path: cqadupstack-android/queries/test.parquet
- config_name: cqadupstack-android-qrels
  data_files:
  - split: test
    path: cqadupstack-android/qrels/test.parquet
- config_name: cqadupstack-english-corpus
  data_files:
  - split: train
    path: cqadupstack-english/corpus/*
- config_name: cqadupstack-english-queries
  data_files:
  - split: test
    path: cqadupstack-english/queries/test.parquet
- config_name: cqadupstack-english-qrels
  data_files:
  - split: test
    path: cqadupstack-english/qrels/test.parquet
- config_name: cqadupstack-gaming-corpus
  data_files:
  - split: train
    path: cqadupstack-gaming/corpus/*
- config_name: cqadupstack-gaming-queries
  data_files:
  - split: test
    path: cqadupstack-gaming/queries/test.parquet
- config_name: cqadupstack-gaming-qrels
  data_files:
  - split: test
    path: cqadupstack-gaming/qrels/test.parquet
- config_name: cqadupstack-gis-corpus
  data_files:
  - split: train
    path: cqadupstack-gis/corpus/*
- config_name: cqadupstack-gis-queries
  data_files:
  - split: test
    path: cqadupstack-gis/queries/test.parquet
- config_name: cqadupstack-gis-qrels
  data_files:
  - split: test
    path: cqadupstack-gis/qrels/test.parquet
- config_name: cqadupstack-mathematica-corpus
  data_files:
  - split: train
    path: cqadupstack-mathematica/corpus/*
- config_name: cqadupstack-mathematica-queries
  data_files:
  - split: test
    path: cqadupstack-mathematica/queries/test.parquet
- config_name: cqadupstack-mathematica-qrels
  data_files:
  - split: test
    path: cqadupstack-mathematica/qrels/test.parquet
- config_name: cqadupstack-physics-corpus
  data_files:
  - split: train
    path: cqadupstack-physics/corpus/*
- config_name: cqadupstack-physics-queries
  data_files:
  - split: test
    path: cqadupstack-physics/queries/test.parquet
- config_name: cqadupstack-physics-qrels
  data_files:
  - split: test
    path: cqadupstack-physics/qrels/test.parquet
- config_name: cqadupstack-programmers-corpus
  data_files:
  - split: train
    path: cqadupstack-programmers/corpus/*
- config_name: cqadupstack-programmers-queries
  data_files:
  - split: test
    path: cqadupstack-programmers/queries/test.parquet
- config_name: cqadupstack-programmers-qrels
  data_files:
  - split: test
    path: cqadupstack-programmers/qrels/test.parquet
- config_name: cqadupstack-stats-corpus
  data_files:
  - split: train
    path: cqadupstack-stats/corpus/*
- config_name: cqadupstack-stats-queries
  data_files:
  - split: test
    path: cqadupstack-stats/queries/test.parquet
- config_name: cqadupstack-stats-qrels
  data_files:
  - split: test
    path: cqadupstack-stats/qrels/test.parquet
- config_name: cqadupstack-text-corpus
  data_files:
  - split: train
    path: cqadupstack-text/corpus/*
- config_name: cqadupstack-text-queries
  data_files:
  - split: test
    path: cqadupstack-text/queries/test.parquet
- config_name: cqadupstack-text-qrels
  data_files:
  - split: test
    path: cqadupstack-text/qrels/test.parquet
- config_name: cqadupstack-unix-corpus
  data_files:
  - split: train
    path: cqadupstack-unix/corpus/*
- config_name: cqadupstack-unix-queries
  data_files:
  - split: test
    path: cqadupstack-unix/queries/test.parquet
- config_name: cqadupstack-unix-qrels
  data_files:
  - split: test
    path: cqadupstack-unix/qrels/test.parquet
- config_name: cqadupstack-webmasters-corpus
  data_files:
  - split: train
    path: cqadupstack-webmasters/corpus/*
- config_name: cqadupstack-webmasters-queries
  data_files:
  - split: test
    path: cqadupstack-webmasters/queries/test.parquet
- config_name: cqadupstack-webmasters-qrels
  data_files:
  - split: test
    path: cqadupstack-webmasters/qrels/test.parquet
- config_name: cqadupstack-wordpress-corpus
  data_files:
  - split: train
    path: cqadupstack-wordpress/corpus/*
- config_name: cqadupstack-wordpress-queries
  data_files:
  - split: test
    path: cqadupstack-wordpress/queries/test.parquet
- config_name: cqadupstack-wordpress-qrels
  data_files:
  - split: test
    path: cqadupstack-wordpress/qrels/test.parquet
- config_name: fever-corpus
  data_files:
  - split: train
    path: fever/corpus/*
- config_name: fever-queries
  data_files:
  - split: train
    path: fever/queries/train.parquet
  - split: dev
    path: fever/queries/dev.parquet
  - split: test
    path: fever/queries/test.parquet
- config_name: fever-qrels
  data_files:
  - split: train
    path: fever/qrels/train.parquet
  - split: dev
    path: fever/qrels/dev.parquet
  - split: test
    path: fever/qrels/test.parquet
- config_name: fiqa-corpus
  data_files:
  - split: train
    path: fiqa/corpus/*
- config_name: fiqa-queries
  data_files:
  - split: train
    path: fiqa/queries/train.parquet
  - split: dev
    path: fiqa/queries/dev.parquet
  - split: all
    path: fiqa/queries/all.parquet
  - split: test
    path: fiqa/queries/test.parquet
- config_name: fiqa-qrels
  data_files:
  - split: train
    path: fiqa/qrels/train.parquet
  - split: dev
    path: fiqa/qrels/dev.parquet
  - split: all
    path: fiqa/qrels/all.parquet
  - split: test
    path: fiqa/qrels/test.parquet
- config_name: hotpotqa-corpus
  data_files:
  - split: train
    path: hotpotqa/corpus/*
- config_name: hotpotqa-queries
  data_files:
  - split: train
    path: hotpotqa/queries/train.parquet
  - split: dev
    path: hotpotqa/queries/dev.parquet
  - split: test
    path: hotpotqa/queries/test.parquet
- config_name: hotpotqa-qrels
  data_files:
  - split: train
    path: hotpotqa/qrels/train.parquet
  - split: dev
    path: hotpotqa/qrels/dev.parquet
  - split: test
    path: hotpotqa/qrels/test.parquet
- config_name: msmarco-corpus
  data_files:
  - split: train
    path: msmarco/corpus/*
- config_name: msmarco-queries
  data_files:
  - split: train
    path: msmarco/queries/train.parquet
  - split: dev
    path: msmarco/queries/dev.parquet
- config_name: msmarco-qrels
  data_files:
  - split: train
    path: msmarco/qrels/train.parquet
  - split: dev
    path: msmarco/qrels/dev.parquet
- config_name: nfcorpus-corpus
  data_files:
  - split: train
    path: nfcorpus/corpus/*
- config_name: nfcorpus-queries
  data_files:
  - split: train
    path: nfcorpus/queries/train.parquet
  - split: dev
    path: nfcorpus/queries/dev.parquet
  - split: test
    path: nfcorpus/queries/test.parquet
- config_name: nfcorpus-qrels
  data_files:
  - split: train
    path: nfcorpus/qrels/train.parquet
  - split: dev
    path: nfcorpus/qrels/dev.parquet
  - split: test
    path: nfcorpus/qrels/test.parquet
- config_name: nq-corpus
  data_files:
  - split: train
    path: nq/corpus/*
- config_name: nq-queries
  data_files:
  - split: test
    path: nq/queries/test.parquet
- config_name: nq-qrels
  data_files:
  - split: test
    path: nq/qrels/test.parquet
- config_name: quora-corpus
  data_files:
  - split: train
    path: quora/corpus/*
- config_name: quora-queries
  data_files:
  - split: dev
    path: quora/queries/dev.parquet
  - split: test
    path: quora/queries/test.parquet
- config_name: quora-qrels
  data_files:
  - split: dev
    path: quora/qrels/dev.parquet
  - split: test
    path: quora/qrels/test.parquet
- config_name: robust04-corpus
  data_files:
  - split: train
    path: robust04/corpus/*
- config_name: robust04-queries
  data_files:
  - split: test
    path: robust04/queries/test.parquet
- config_name: robust04-qrels
  data_files:
  - split: test
    path: robust04/qrels/test.parquet
- config_name: scidocs-corpus
  data_files:
  - split: train
    path: scidocs/corpus/*
- config_name: scidocs-queries
  data_files:
  - split: test
    path: scidocs/queries/test.parquet
- config_name: scidocs-qrels
  data_files:
  - split: test
    path: scidocs/qrels/test.parquet
- config_name: scifact-corpus
  data_files:
  - split: train
    path: scifact/corpus/*
- config_name: scifact-queries
  data_files:
  - split: train
    path: scifact/queries/train.parquet
  - split: test
    path: scifact/queries/test.parquet
- config_name: scifact-qrels
  data_files:
  - split: train
    path: scifact/qrels/train.parquet
  - split: test
    path: scifact/qrels/test.parquet
- config_name: signal1m-corpus
  data_files:
  - split: train
    path: signal1m/corpus/*
- config_name: signal1m-queries
  data_files:
  - split: test
    path: signal1m/queries/test.parquet
- config_name: signal1m-qrels
  data_files:
  - split: test
    path: signal1m/qrels/test.parquet
- config_name: trec-covid-corpus
  data_files:
  - split: train
    path: trec-covid/corpus/*
- config_name: trec-covid-queries
  data_files:
  - split: test
    path: trec-covid/queries/test.parquet
- config_name: trec-covid-qrels
  data_files:
  - split: test
    path: trec-covid/qrels/test.parquet
- config_name: trec-news-corpus
  data_files:
  - split: train
    path: trec-news/corpus/*
- config_name: trec-news-queries
  data_files:
  - split: test
    path: trec-news/queries/test.parquet
- config_name: trec-news-qrels
  data_files:
  - split: test
    path: trec-news/qrels/test.parquet
- config_name: webis-touche2020-corpus
  data_files:
  - split: train
    path: webis-touche2020/corpus/*
- config_name: webis-touche2020-queries
  data_files:
  - split: test
    path: webis-touche2020/queries/test.parquet
- config_name: webis-touche2020-qrels
  data_files:
  - split: test
    path: webis-touche2020/qrels/test.parquet
---


# BEIR embeddings with Cohere embed-english-v3.0 model

This datasets contains all query & document embeddings for [BEIR](https://github.com/beir-cellar/beir), embedded with the [Cohere embed-english-v3.0](https://huggingface.co/Cohere/Cohere-embed-english-v3.0) embedding model.


## Overview of datasets

This repository hosts all 18 datasets from BEIR, including query and document embeddings. The following table gives an overview of the available datasets.
See the next section how to load the individual datasets.

| Dataset | nDCG@10 | #Documents
| --- |  --- | --- |
| arguana | 53.98 | 8,674 |
| bioasq | 45.66 | 14,914,603 |
| climate-fever | 25.90 | 5,416,593 |
| cqadupstack-android | 50.01 | 22,998 |
| cqadupstack-english | 49.09 | 40,221 |
| cqadupstack-gaming | 60.50 | 45,301 |
| cqadupstack-gis | 39.17 | 37,637 |
| cqadupstack-mathematica | 30.38 | 16,705 |
| cqadupstack-physics | 43.82 | 38,316 |
| cqadupstack-programmers | 43.67 | 32,176 |
| cqadupstack-stats | 35.23 | 42,269 |
| cqadupstack-text | 30.84 | 68,184 |
| cqadupstack-unix | 40.59 | 47,382 |
| cqadupstack-webmasters | 40.68 | 17,405 |
| cqadupstack-wordpress | 34.26 | 48,605 |
| fever | 89.00 | 5,416,568 |
| fiqa | 42.14 | 57,638 |
| hotpotqa | 70.72 | 5,233,329 |
| msmarco | 42.86 | 8,841,823 |
| nfcorpus | 38.63 | 3,633 |
| nq | 61.62 | 2,681,468 |
| quora | 88.72 | 522,931 |
| robust04 | 54.06 | 528,155 |
| scidocs | 20.34 | 25,657 |
| scifact | 71.81 | 5,183 |
| signal1m | 26.32 | 2,866,316 |
| trec-covid | 81.78 | 171,332 |
| trec-news | 50.42 | 594,977 |
| webis-touche2020 | 32.64 | 382,545 |

Notes:
- arguana: The task of arguana is to find for a given argument (e.g. `Being vegetarian helps the environment ...`), an argument that refutes it (e.g. `Vegetarian doesn't have an impact on the environment`). Naturally, embedding models work by finding the most similar texts, hence for the given argument it would find similar arguments first that support that `vegetarian helps the environment`, which would be treated as non-relevant. By embedding model prompting, the model can be steered to find arguments that refute the query. This will improve the nDCG@10 score from 53.98 to 61.5.
- climate-fever: The task is to find evidence that support or refute a claim. As with arguana, with the default mode, the model will find the evidence primarily supporting the claim. By embedding model prompting, we can tell the model to find support and contra evidence for a claim. This improves the nDCG@10 score to 38.4.
- Quora: As the corpus consists of questions, they have been encoded with the `input_type='search_query'` in order to find similar/duplicate questions.
- cqadupstack: The datasets consists of several sub-datasets, where the nDCG@10 scores will be averaged in BEIR.
- bioasq/robust04/trec-news/signal1m: For these datasets we just provide the IDs and the embeddings, but not title/text fields. See the [BEIR repository](https://github.com/beir-cellar/beir) how to obtain the respective text corpora. You can still evaluate search quality on these datasets.


## Loading the dataset

### Loading the document embeddings
The `corpus` split contains all document embeddings of the corpus.

You can either load the dataset like this:
```python

from datasets import load_dataset

dataset_name = "hotpotqa"

docs = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train")

```

Or you can also stream it without downloading it before:
```python

from datasets import load_dataset

dataset_name = "hotpotqa"

docs = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train", streaming=True)

for doc in docs:

	doc_id = doc['_id']

	title = doc['title']

	text = doc['text']

	emb = doc['emb']

```

Note, depending on the dataset size, the corpus split can be quite large.

### Loading the query embeddings
The `queries` split contains all query embeddings. There might be up to three splits: `train`, `dev`, and `test`, depending which splits are available in BEIR. Evaluation is performed on the `test` split.

You can load the dataset like this:
```python

from datasets import load_dataset

dataset_name = "hotpotqa"

queries = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-queries", split="test")



for query in queries:

	query_id = query['_id']

	text = query['text']

	emb = query['emb']

```


### Loading the qrels

The `qrels` split contains the query relevance annotation, i.e., it contains the relevance score for (query, document) pairs.


You can load the dataset like this:
```python

from datasets import load_dataset

dataset_name = "hotpotqa"

qrels = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-qrels", split="test")



for qrel in qrels:

	query_id = qrel['query_id']

	corpus_id = qrel['corpus_id']

	score = qrel['score']

```

## Search
The following shows an example, how the dataset can be used to build a semantic search application. 

Get your API key from [cohere.com](https://cohere.com) and start using this dataset.

```python

#Run: pip install cohere datasets torch

from datasets import load_dataset

import torch

import cohere

dataset_name = "hotpotqa"

co = cohere.Client("<<COHERE_API_KEY>>")  # Add your cohere API key from www.cohere.com



#Load at max 1000 documents + embeddings

max_docs = 1000

docs_stream = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train", streaming=True)

docs = []

doc_embeddings = []

for doc in docs_stream:

    docs.append(doc)

    doc_embeddings.append(doc['emb'])

    if len(docs) >= max_docs:

        break



doc_embeddings = torch.tensor(doc_embeddings)



query = 'What is an abstract' #Your query 

response = co.embed(texts=[query], model='embed-english-v3.0', input_type='search_query')

query_embedding = response.embeddings 

query_embedding = torch.tensor(query_embedding)



# Compute dot score between query embedding and document embeddings

dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1))

top_k = torch.topk(dot_scores, k=3)



# Print results

print("Query:", query)

for doc_id in top_k.indices[0].tolist():

    print(docs[doc_id]['title'])

    print(docs[doc_id]['text'], "\n")

```


## Running evaluations

This dataset allows to reproduce the [BEIR](https://github.com/beir-cellar/beir) performance results and to compute nDCG@10, Recall@10, and Accuracy@3.

You must have `beir`, `faiss`, `numpy`, and `datasets` installed. The following scripts loads all files, runs search and computes the search quality metrices.

```python

import numpy as np

import faiss

from beir.retrieval.evaluation import EvaluateRetrieval

import time

from datasets import load_dataset



def faiss_search(index, queries_emb, k=[10, 100]):

    start_time = time.time()

    faiss_scores, faiss_doc_ids = index.search(queries_emb, max(k))

    print(f"Search took {(time.time()-start_time):.2f} sec")

    

    query2id = {idx: qid for idx, qid in enumerate(query_ids)}

    doc2id = {idx: cid for idx, cid in enumerate(docs_ids)}



    faiss_results = {}

    for idx in range(0, len(faiss_scores)):

        qid = query2id[idx]

        doc_scores = {doc2id[doc_id]: score.item() for doc_id, score in zip(faiss_doc_ids[idx], faiss_scores[idx])}

        faiss_results[qid] = doc_scores



    ndcg, map_score, recall, precision = EvaluateRetrieval.evaluate(qrels, faiss_results, k)

    acc = EvaluateRetrieval.evaluate_custom(qrels, faiss_results, [3, 5, 10], metric="acc")

    print(ndcg)

    print(recall)

    print(acc)



dataset_name = "<<DATASET_NAME>>" 

dataset_split = "test"

num_dim = 1024



#Load qrels

df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-qrels", split=dataset_split)

qrels = {}

for row in df:

    qid = row['query_id']

    cid = row['corpus_id']

    

    if row['score'] > 0:

        if qid not in qrels:

            qrels[qid] = {}

        qrels[qid][cid] = row['score']



#Load queries

df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-queries", split=dataset_split)



query_ids = df['_id']

query_embs = np.asarray(df['emb'])

print("Query embeddings:", query_embs.shape)



#Load corpus

df = load_dataset("Cohere/beir-embed-english-v3", f"{dataset_name}-corpus", split="train")



docs_ids = df['_id']



#Build index

print("Build index. This might take some time")

index = faiss.IndexFlatIP(num_dim)

index.add(np.asarray(df.to_pandas()['emb'].tolist()))



#Run and evaluate search

print("Seach on index")

faiss_search(index, query_embs)

```

## Notes
- This dataset was created with `datasets==2.15.0`. Make sure to use this or a newer version of the datasets library.