Datasets:
Tasks:
Object Detection
Sub-tasks:
face-detection
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
Commit
·
ade652b
0
Parent(s):
Update files from the datasets library (from 1.18.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.18.0
- .gitattributes +27 -0
- README.md +208 -0
- dataset_infos.json +1 -0
- dummy/1.0.0/dummy_data.zip +3 -0
- wider_face.py +163 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
source_datasets:
|
15 |
+
- extended|other-wider
|
16 |
+
task_categories:
|
17 |
+
- other
|
18 |
+
task_ids:
|
19 |
+
- other-other-face-detection
|
20 |
+
paperswithcode_id: wider-face-1
|
21 |
+
pretty_name: WIDER FACE
|
22 |
+
---
|
23 |
+
|
24 |
+
# Dataset Card for WIDER FACE
|
25 |
+
|
26 |
+
## Table of Contents
|
27 |
+
- [Table of Contents](#table-of-contents)
|
28 |
+
- [Dataset Description](#dataset-description)
|
29 |
+
- [Dataset Summary](#dataset-summary)
|
30 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
31 |
+
- [Languages](#languages)
|
32 |
+
- [Dataset Structure](#dataset-structure)
|
33 |
+
- [Data Instances](#data-instances)
|
34 |
+
- [Data Fields](#data-fields)
|
35 |
+
- [Data Splits](#data-splits)
|
36 |
+
- [Dataset Creation](#dataset-creation)
|
37 |
+
- [Curation Rationale](#curation-rationale)
|
38 |
+
- [Source Data](#source-data)
|
39 |
+
- [Annotations](#annotations)
|
40 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
41 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
42 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
43 |
+
- [Discussion of Biases](#discussion-of-biases)
|
44 |
+
- [Other Known Limitations](#other-known-limitations)
|
45 |
+
- [Additional Information](#additional-information)
|
46 |
+
- [Dataset Curators](#dataset-curators)
|
47 |
+
- [Licensing Information](#licensing-information)
|
48 |
+
- [Citation Information](#citation-information)
|
49 |
+
- [Contributions](#contributions)
|
50 |
+
|
51 |
+
## Dataset Description
|
52 |
+
|
53 |
+
- **Homepage:** http://shuoyang1213.me/WIDERFACE/index.html
|
54 |
+
- **Repository:**
|
55 |
+
- **Paper:** [WIDER FACE: A Face Detection Benchmark](https://arxiv.org/abs/1511.06523)
|
56 |
+
- **Leaderboard:** http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html
|
57 |
+
- **Point of Contact:** [email protected]
|
58 |
+
|
59 |
+
### Dataset Summary
|
60 |
+
|
61 |
+
WIDER FACE dataset is a face detection benchmark dataset, of which images are
|
62 |
+
selected from the publicly available WIDER dataset. We choose 32,203 images and
|
63 |
+
label 393,703 faces with a high degree of variability in scale, pose and
|
64 |
+
occlusion as depicted in the sample images. WIDER FACE dataset is organized
|
65 |
+
based on 61 event classes. For each event class, we randomly select 40%/10%/50%
|
66 |
+
data as training, validation and testing sets. We adopt the same evaluation
|
67 |
+
metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets,
|
68 |
+
we do not release bounding box ground truth for the test images. Users are
|
69 |
+
required to submit final prediction files, which we shall proceed to evaluate.
|
70 |
+
|
71 |
+
### Supported Tasks and Leaderboards
|
72 |
+
|
73 |
+
- `face-detection`: The dataset can be used to train a model for Face Detection. More information on evaluating the model's performance can be found [here](http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html).
|
74 |
+
|
75 |
+
### Languages
|
76 |
+
|
77 |
+
English
|
78 |
+
|
79 |
+
## Dataset Structure
|
80 |
+
|
81 |
+
### Data Instances
|
82 |
+
|
83 |
+
A data point comprises an image and its face annotations.
|
84 |
+
|
85 |
+
```
|
86 |
+
{
|
87 |
+
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1024x755 at 0x19FA12186D8>, 'faces': {
|
88 |
+
'bbox': [
|
89 |
+
[178.0, 238.0, 55.0, 73.0],
|
90 |
+
[248.0, 235.0, 59.0, 73.0],
|
91 |
+
[363.0, 157.0, 59.0, 73.0],
|
92 |
+
[468.0, 153.0, 53.0, 72.0],
|
93 |
+
[629.0, 110.0, 56.0, 81.0],
|
94 |
+
[745.0, 138.0, 55.0, 77.0]
|
95 |
+
],
|
96 |
+
'blur': [2, 2, 2, 2, 2, 2],
|
97 |
+
'expression': [0, 0, 0, 0, 0, 0],
|
98 |
+
'illumination': [0, 0, 0, 0, 0, 0],
|
99 |
+
'occlusion': [1, 2, 1, 2, 1, 2],
|
100 |
+
'pose': [0, 0, 0, 0, 0, 0],
|
101 |
+
'invalid': [False, False, False, False, False, False]
|
102 |
+
}
|
103 |
+
}
|
104 |
+
```
|
105 |
+
|
106 |
+
### Data Fields
|
107 |
+
|
108 |
+
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
|
109 |
+
- `faces`: a dictionary of face attributes for the faces present on the image
|
110 |
+
- `bbox`: the bounding box of each face (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
|
111 |
+
- `blur`: the blur level of each face, with possible values including `clear` (0), `normal` (1) and `heavy`
|
112 |
+
- `expression`: the facial expression of each face, with possible values including `typical` (0) and `exaggerate` (1)
|
113 |
+
- `illumination`: the lightning condition of each face, with possible values including `normal` (0) and `exaggerate` (1)
|
114 |
+
- `occlusion`: the level of occlusion of each face, with possible values including `no` (0), `partial` (1) and `heavy` (2)
|
115 |
+
- `pose`: the pose of each face, with possible values including `typical` (0) and `atypical` (1)
|
116 |
+
- `invalid`: whether the image is valid or invalid.
|
117 |
+
|
118 |
+
### Data Splits
|
119 |
+
|
120 |
+
The data is split into training, validation and testing set. WIDER FACE dataset is organized
|
121 |
+
based on 61 event classes. For each event class, 40%/10%/50%
|
122 |
+
data is randomly selected as training, validation and testing sets. The training set contains 12880 images, the validation set 3226 images and test set 16097 images.
|
123 |
+
|
124 |
+
## Dataset Creation
|
125 |
+
|
126 |
+
### Curation Rationale
|
127 |
+
|
128 |
+
The curators state that the current face detection datasets typically contain a few thousand faces, with limited variations in pose, scale, facial expression, occlusion, and background clutters,
|
129 |
+
making it difficult to assess for real world performance. They argue that the limitations of datasets have partially contributed to the failure of some algorithms in coping
|
130 |
+
with heavy occlusion, small scale, and atypical pose.
|
131 |
+
|
132 |
+
### Source Data
|
133 |
+
|
134 |
+
#### Initial Data Collection and Normalization
|
135 |
+
|
136 |
+
WIDER FACE dataset is a subset of the WIDER dataset.
|
137 |
+
The images in WIDER were collected in the following three steps: 1) Event categories
|
138 |
+
were defined and chosen following the Large Scale Ontology for Multimedia (LSCOM) [22], which provides around 1000 concepts relevant to video event analysis. 2) Images
|
139 |
+
are retrieved using search engines like Google and Bing. For
|
140 |
+
each category, 1000-3000 images were collected. 3) The
|
141 |
+
data were cleaned by manually examining all the images
|
142 |
+
and filtering out images without human face. Then, similar
|
143 |
+
images in each event category were removed to ensure large
|
144 |
+
diversity in face appearance. A total of 32203 images are
|
145 |
+
eventually included in the WIDER FACE dataset.
|
146 |
+
|
147 |
+
#### Who are the source language producers?
|
148 |
+
|
149 |
+
The images are selected from publicly available WIDER dataset.
|
150 |
+
|
151 |
+
### Annotations
|
152 |
+
|
153 |
+
#### Annotation process
|
154 |
+
|
155 |
+
The curators label the bounding boxes for all
|
156 |
+
the recognizable faces in the WIDER FACE dataset. The
|
157 |
+
bounding box is required to tightly contain the forehead,
|
158 |
+
chin, and cheek.. If a face is occluded, they still label it with a bounding box but with an estimation on the scale of occlusion. Similar to the PASCAL VOC dataset [6], they assign an ’Ignore’ flag to the face
|
159 |
+
which is very difficult to be recognized due to low resolution and small scale (10 pixels or less). After annotating
|
160 |
+
the face bounding boxes, they further annotate the following
|
161 |
+
attributes: pose (typical, atypical) and occlusion level (partial, heavy). Each annotation is labeled by one annotator
|
162 |
+
and cross-checked by two different people.
|
163 |
+
|
164 |
+
#### Who are the annotators?
|
165 |
+
|
166 |
+
Shuo Yang, Ping Luo, Chen Change Loy and Xiaoou Tang.
|
167 |
+
|
168 |
+
### Personal and Sensitive Information
|
169 |
+
|
170 |
+
[More Information Needed]
|
171 |
+
|
172 |
+
## Considerations for Using the Data
|
173 |
+
|
174 |
+
### Social Impact of Dataset
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
### Discussion of Biases
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
### Other Known Limitations
|
183 |
+
|
184 |
+
[More Information Needed]
|
185 |
+
|
186 |
+
## Additional Information
|
187 |
+
|
188 |
+
### Dataset Curators
|
189 |
+
|
190 |
+
Shuo Yang, Ping Luo, Chen Change Loy and Xiaoou Tang
|
191 |
+
|
192 |
+
### Licensing Information
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
### Citation Information
|
197 |
+
|
198 |
+
```
|
199 |
+
@inproceedings{yang2016wider,
|
200 |
+
Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
|
201 |
+
Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
202 |
+
Title = {WIDER FACE: A Face Detection Benchmark},
|
203 |
+
Year = {2016}}
|
204 |
+
```
|
205 |
+
|
206 |
+
### Contributions
|
207 |
+
|
208 |
+
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "WIDER FACE dataset is a face detection benchmark dataset, of which images are\nselected from the publicly available WIDER dataset. We choose 32,203 images and\nlabel 393,703 faces with a high degree of variability in scale, pose and\nocclusion as depicted in the sample images. WIDER FACE dataset is organized\nbased on 61 event classes. For each event class, we randomly select 40%/10%/50%\ndata as training, validation and testing sets. We adopt the same evaluation\nmetric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets,\nwe do not release bounding box ground truth for the test images. Users are\nrequired to submit final prediction files, which we shall proceed to evaluate.\n", "citation": "@inproceedings{yang2016wider,\n Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},\n Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},\n Title = {WIDER FACE: A Face Detection Benchmark},\n Year = {2016}}\n", "homepage": "http://shuoyang1213.me/WIDERFACE/", "license": "Unknown", "features": {"image": {"id": null, "_type": "Image"}, "faces": {"feature": {"bbox": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": 4, "id": null, "_type": "Sequence"}, "blur": {"num_classes": 3, "names": ["clear", "normal", "heavy"], "names_file": null, "id": null, "_type": "ClassLabel"}, "expression": {"num_classes": 2, "names": ["typical", "exaggerate"], "names_file": null, "id": null, "_type": "ClassLabel"}, "illumination": {"num_classes": 2, "names": ["normal", "exaggerate "], "names_file": null, "id": null, "_type": "ClassLabel"}, "occlusion": {"num_classes": 3, "names": ["no", "partial", "heavy"], "names_file": null, "id": null, "_type": "ClassLabel"}, "pose": {"num_classes": 2, "names": ["typical", "atypical"], "names_file": null, "id": null, "_type": "ClassLabel"}, "invalid": {"dtype": "bool", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wider_face", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 11996002, "num_examples": 12880, "dataset_name": "wider_face"}, "test": {"name": "test", "num_bytes": 3796193, "num_examples": 16097, "dataset_name": "wider_face"}, "validation": {"name": "validation", "num_bytes": 2985369, "num_examples": 3226, "dataset_name": "wider_face"}}, "download_checksums": {"https://drive.google.com/u/0/uc?id=15hGDLhsx8bLgLcIRD5DhYt5iBxnjNF1M&export=download": {"num_bytes": 1465602149, "checksum": "e23b76129c825cafae8be944f65310b2e1ba1c76885afe732f179c41e5ed6d59"}, "https://drive.google.com/u/0/uc?id=1HIfDbVEWKmsYKJZm4lchTBDLW5N7dY5T&export=download": {"num_bytes": 1844140520, "checksum": "3b0313e11ea292ec58894b47ac4c0503b230e12540330845d70a7798241f88d3"}, "https://drive.google.com/u/0/uc?id=1GUCogbp16PMGa39thoMMeWxp7Rp5oM8Q&export=download": {"num_bytes": 362752168, "checksum": "f9efbd09f28c5d2d884be8c0eaef3967158c866a593fc36ab0413e4b2a58a17a"}, "http://shuoyang1213.me/WIDERFACE/support/bbx_annotation/wider_face_split.zip": {"num_bytes": 3591642, "checksum": "c7561e4f5e7a118c249e0a5c5c902b0de90bbf120d7da9fa28d99041f68a8a5c"}}, "download_size": 3676086479, "post_processing_size": null, "dataset_size": 18777564, "size_in_bytes": 3694864043}}
|
dummy/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0c38fd59a83037e2271f9778fa84462a34613629f35b2882343ad7077e93f8c
|
3 |
+
size 6751
|
wider_face.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""WIDER FACE dataset."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
_HOMEPAGE = "http://shuoyang1213.me/WIDERFACE/"
|
23 |
+
|
24 |
+
_LICENSE = "Unknown"
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@inproceedings{yang2016wider,
|
28 |
+
Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
|
29 |
+
Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
30 |
+
Title = {WIDER FACE: A Face Detection Benchmark},
|
31 |
+
Year = {2016}}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
WIDER FACE dataset is a face detection benchmark dataset, of which images are
|
36 |
+
selected from the publicly available WIDER dataset. We choose 32,203 images and
|
37 |
+
label 393,703 faces with a high degree of variability in scale, pose and
|
38 |
+
occlusion as depicted in the sample images. WIDER FACE dataset is organized
|
39 |
+
based on 61 event classes. For each event class, we randomly select 40%/10%/50%
|
40 |
+
data as training, validation and testing sets. We adopt the same evaluation
|
41 |
+
metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets,
|
42 |
+
we do not release bounding box ground truth for the test images. Users are
|
43 |
+
required to submit final prediction files, which we shall proceed to evaluate.
|
44 |
+
"""
|
45 |
+
|
46 |
+
_TRAIN_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=15hGDLhsx8bLgLcIRD5DhYt5iBxnjNF1M&export=download"
|
47 |
+
_TEST_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=1HIfDbVEWKmsYKJZm4lchTBDLW5N7dY5T&export=download"
|
48 |
+
_VALIDATION_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=1GUCogbp16PMGa39thoMMeWxp7Rp5oM8Q&export=download"
|
49 |
+
_ANNOT_DOWNLOAD_URL = "http://shuoyang1213.me/WIDERFACE/support/bbx_annotation/wider_face_split.zip"
|
50 |
+
|
51 |
+
|
52 |
+
class WiderFace(datasets.GeneratorBasedBuilder):
|
53 |
+
"""WIDER FACE dataset."""
|
54 |
+
|
55 |
+
VERSION = datasets.Version("1.0.0")
|
56 |
+
|
57 |
+
def _info(self):
|
58 |
+
return datasets.DatasetInfo(
|
59 |
+
description=_DESCRIPTION,
|
60 |
+
features=datasets.Features(
|
61 |
+
{
|
62 |
+
"image": datasets.Image(),
|
63 |
+
"faces": datasets.Sequence(
|
64 |
+
{
|
65 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
66 |
+
"blur": datasets.ClassLabel(names=["clear", "normal", "heavy"]),
|
67 |
+
"expression": datasets.ClassLabel(names=["typical", "exaggerate"]),
|
68 |
+
"illumination": datasets.ClassLabel(names=["normal", "exaggerate "]),
|
69 |
+
"occlusion": datasets.ClassLabel(names=["no", "partial", "heavy"]),
|
70 |
+
"pose": datasets.ClassLabel(names=["typical", "atypical"]),
|
71 |
+
"invalid": datasets.Value("bool"),
|
72 |
+
}
|
73 |
+
),
|
74 |
+
}
|
75 |
+
),
|
76 |
+
supervised_keys=None,
|
77 |
+
homepage=_HOMEPAGE,
|
78 |
+
license=_LICENSE,
|
79 |
+
citation=_CITATION,
|
80 |
+
)
|
81 |
+
|
82 |
+
def _split_generators(self, dl_manager):
|
83 |
+
train_dir, test_dir, validation_dir, annot_dir = dl_manager.download_and_extract(
|
84 |
+
[_TRAIN_DOWNLOAD_URL, _TEST_DOWNLOAD_URL, _VALIDATION_DOWNLOAD_URL, _ANNOT_DOWNLOAD_URL]
|
85 |
+
)
|
86 |
+
return [
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.TRAIN,
|
89 |
+
gen_kwargs={
|
90 |
+
"split": "train",
|
91 |
+
"data_dir": train_dir,
|
92 |
+
"annot_dir": annot_dir,
|
93 |
+
},
|
94 |
+
),
|
95 |
+
datasets.SplitGenerator(
|
96 |
+
name=datasets.Split.TEST,
|
97 |
+
gen_kwargs={
|
98 |
+
"split": "test",
|
99 |
+
"data_dir": test_dir,
|
100 |
+
"annot_dir": annot_dir,
|
101 |
+
},
|
102 |
+
),
|
103 |
+
datasets.SplitGenerator(
|
104 |
+
name=datasets.Split.VALIDATION,
|
105 |
+
gen_kwargs={
|
106 |
+
"split": "val",
|
107 |
+
"data_dir": validation_dir,
|
108 |
+
"annot_dir": annot_dir,
|
109 |
+
},
|
110 |
+
),
|
111 |
+
]
|
112 |
+
|
113 |
+
def _generate_examples(self, split, data_dir, annot_dir):
|
114 |
+
image_dir = os.path.join(data_dir, "WIDER_" + split, "images")
|
115 |
+
annot_fname = "wider_face_test_filelist.txt" if split == "test" else f"wider_face_{split}_bbx_gt.txt"
|
116 |
+
with open(os.path.join(annot_dir, "wider_face_split", annot_fname), "r", encoding="utf-8") as f:
|
117 |
+
idx = 0
|
118 |
+
while True:
|
119 |
+
line = f.readline()
|
120 |
+
line = line.rstrip()
|
121 |
+
if not line.endswith(".jpg"):
|
122 |
+
break
|
123 |
+
image_file_path = os.path.join(image_dir, line)
|
124 |
+
faces = []
|
125 |
+
if split != "test":
|
126 |
+
# Read number of bounding boxes
|
127 |
+
nbboxes = int(f.readline())
|
128 |
+
# Cases with 0 bounding boxes, still have one line with all zeros.
|
129 |
+
# So we have to read it and discard it.
|
130 |
+
if nbboxes == 0:
|
131 |
+
f.readline()
|
132 |
+
else:
|
133 |
+
for _ in range(nbboxes):
|
134 |
+
line = f.readline()
|
135 |
+
line = line.rstrip()
|
136 |
+
line_split = line.split()
|
137 |
+
assert len(line_split) == 10, f"Cannot parse line: {line_split}"
|
138 |
+
line_parsed = [int(n) for n in line_split]
|
139 |
+
(
|
140 |
+
xmin,
|
141 |
+
ymin,
|
142 |
+
wbox,
|
143 |
+
hbox,
|
144 |
+
blur,
|
145 |
+
expression,
|
146 |
+
illumination,
|
147 |
+
invalid,
|
148 |
+
occlusion,
|
149 |
+
pose,
|
150 |
+
) = line_parsed
|
151 |
+
faces.append(
|
152 |
+
{
|
153 |
+
"bbox": [xmin, ymin, wbox, hbox],
|
154 |
+
"blur": blur,
|
155 |
+
"expression": expression,
|
156 |
+
"illumination": illumination,
|
157 |
+
"occlusion": occlusion,
|
158 |
+
"pose": pose,
|
159 |
+
"invalid": invalid,
|
160 |
+
}
|
161 |
+
)
|
162 |
+
yield idx, {"image": image_file_path, "faces": faces}
|
163 |
+
idx += 1
|