BrunoHays commited on
Commit
b3751a3
·
1 Parent(s): f338db6

Update ESLO.py

Browse files
Files changed (1) hide show
  1. ESLO.py +19 -17
ESLO.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import os
2
  import re
3
  from ctypes import Array
@@ -24,7 +26,7 @@ _DESCRIPTION = """\
24
  ESLO dataset, each utterance are taken out individually
25
  """
26
  SAMPLING_RATE = 16000
27
- AUDIO_FOLDER = "audio"
28
  AUDIO_FILES = ['ESLO2_ITI_1073.mp4', 'ESLO1_ENT_117.mp4', 'ESLO1_ENT_103.mp4', 'ESLO2_ITI_1098.mp4',
29
  'ESLO1_ENTCONT_237.mp4', 'ESLO1_ENTCONT_223.mp4', 'ESLO2_RUMEUR_1339.mp4', 'ESLO2_INTPERS_1245.mp4',
30
  'ESLO1_TEL_364.mp4', 'ESLO2_ITI_1107.mp4', 'ESLO1_CONF_503.mp4', 'ESLO1_MAG_631.mp4',
@@ -261,8 +263,8 @@ class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
261
  def _split_generators(self, dl_manager):
262
 
263
  transcripts = dl_manager.download({
264
- "train": "transcripts_deduplicated_train.zip",
265
- "test": "transcripts_deduplicated_test.zip",
266
  })
267
  audio_files = dl_manager.download(
268
  {audio_file: os.path.join(AUDIO_FOLDER, audio_file) for audio_file in AUDIO_FILES})
@@ -297,7 +299,7 @@ class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
297
 
298
  def clean_text(self, text: str) -> str:
299
  def replace_uppercase(match):
300
- """replaces BRUNO spelling by B R U N O"""
301
  return ' '.join(match.group(1))
302
 
303
  text = re.sub(r"\bNPERS\b", "", text)
@@ -321,7 +323,7 @@ class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
321
  end_time = float(turn.get('endTime'))
322
  text = re.sub(r"[\r\n\s]+", " ", MultilingualLibrispeech.extract_text(turn).strip())
323
  text = self.clean_text(text)
324
- if text:
325
  utts.append(Utterance(
326
  speaker=speaker,
327
  sentence=text,
@@ -337,7 +339,7 @@ class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
337
  Open an audio file and read as mono waveform, resampling as necessary
338
  Parameters
339
  ----------
340
- file:The audio file to read
341
  sr: int
342
  The sample rate to resample the audio if necessary
343
  Returns
@@ -361,6 +363,7 @@ class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
361
  return audio[int(round(start_timestamp * SAMPLING_RATE)): int(round(end_timestamp * SAMPLING_RATE)) + 1]
362
 
363
  def _generate_examples(self, transcripts_paths, audio_files):
 
364
  for path, file in transcripts_paths:
365
  file_name = os.path.splitext(os.path.basename(path))[0][:-2]
366
  audio_path = f"{file_name}.mp4"
@@ -368,14 +371,13 @@ class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
368
  for utterance in self.load_one(file):
369
  if not self.config.overlap and utterance.overlap:
370
  continue
371
- if len(utterance.sentence.strip())>0:
372
- yield f"{file_name}_{utterance.start_timestamp}-{utterance.end_timestamp}", {
373
- "file": file_name,
374
- "sentence": utterance.sentence,
375
- "start_timestamp": utterance.start_timestamp,
376
- "end_timestamp": utterance.end_timestamp,
377
- "speaker": utterance.speaker,
378
- "overlap": utterance.overlap,
379
- "audio": {"path": audio_path,
380
- "array": self._cut_audio(audio, utterance.start_timestamp, utterance.end_timestamp),
381
- "sampling_rate": 16000}}
 
1
+ """Multilingual Librispeech automatic speech recognition dataset."""
2
+
3
  import os
4
  import re
5
  from ctypes import Array
 
26
  ESLO dataset, each utterance are taken out individually
27
  """
28
  SAMPLING_RATE = 16000
29
+ AUDIO_FOLDER = "/Users/brunohays/datalab/épellations/Scrapping/ortolang_datasets/eslo/downloads/audio"
30
  AUDIO_FILES = ['ESLO2_ITI_1073.mp4', 'ESLO1_ENT_117.mp4', 'ESLO1_ENT_103.mp4', 'ESLO2_ITI_1098.mp4',
31
  'ESLO1_ENTCONT_237.mp4', 'ESLO1_ENTCONT_223.mp4', 'ESLO2_RUMEUR_1339.mp4', 'ESLO2_INTPERS_1245.mp4',
32
  'ESLO1_TEL_364.mp4', 'ESLO2_ITI_1107.mp4', 'ESLO1_CONF_503.mp4', 'ESLO1_MAG_631.mp4',
 
263
  def _split_generators(self, dl_manager):
264
 
265
  transcripts = dl_manager.download({
266
+ "train": "/Users/brunohays/datalab/épellations/Scrapping/ortolang_datasets/eslo/downloads/transcripts_deduplicated_train.zip",
267
+ "test": "/Users/brunohays/datalab/épellations/Scrapping/ortolang_datasets/eslo/downloads/transcripts_deduplicated_test.zip",
268
  })
269
  audio_files = dl_manager.download(
270
  {audio_file: os.path.join(AUDIO_FOLDER, audio_file) for audio_file in AUDIO_FILES})
 
299
 
300
  def clean_text(self, text: str) -> str:
301
  def replace_uppercase(match):
302
+ """replaces BRUNO spelling by B R U N O"""
303
  return ' '.join(match.group(1))
304
 
305
  text = re.sub(r"\bNPERS\b", "", text)
 
323
  end_time = float(turn.get('endTime'))
324
  text = re.sub(r"[\r\n\s]+", " ", MultilingualLibrispeech.extract_text(turn).strip())
325
  text = self.clean_text(text)
326
+ if any(c.isalnum() for c in text):
327
  utts.append(Utterance(
328
  speaker=speaker,
329
  sentence=text,
 
339
  Open an audio file and read as mono waveform, resampling as necessary
340
  Parameters
341
  ----------
342
+ file:vThe audio file to read
343
  sr: int
344
  The sample rate to resample the audio if necessary
345
  Returns
 
363
  return audio[int(round(start_timestamp * SAMPLING_RATE)): int(round(end_timestamp * SAMPLING_RATE)) + 1]
364
 
365
  def _generate_examples(self, transcripts_paths, audio_files):
366
+ """Generate examples from a Multilingual LibriSpeech data dir."""
367
  for path, file in transcripts_paths:
368
  file_name = os.path.splitext(os.path.basename(path))[0][:-2]
369
  audio_path = f"{file_name}.mp4"
 
371
  for utterance in self.load_one(file):
372
  if not self.config.overlap and utterance.overlap:
373
  continue
374
+ yield f"{file_name}_{utterance.start_timestamp}-{utterance.end_timestamp}", {
375
+ "file": file_name,
376
+ "sentence": utterance.sentence,
377
+ "start_timestamp": utterance.start_timestamp,
378
+ "end_timestamp": utterance.end_timestamp,
379
+ "speaker": utterance.speaker,
380
+ "overlap": utterance.overlap,
381
+ "audio": {"path": audio_path,
382
+ "array": self._cut_audio(audio, utterance.start_timestamp, utterance.end_timestamp),
383
+ "sampling_rate": 16000}}