Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10M - 100M
ArXiv:
License:
parquet-converter
commited on
Commit
·
007bc7f
1
Parent(s):
ebd2dc1
Update parquet files
Browse files- README.md +0 -224
- asnq.py +0 -150
- dataset_infos.json +0 -1
- default/asnq-train-00000-of-00008.parquet +3 -0
- default/asnq-train-00001-of-00008.parquet +3 -0
- default/asnq-train-00002-of-00008.parquet +3 -0
- default/asnq-train-00003-of-00008.parquet +3 -0
- default/asnq-train-00004-of-00008.parquet +3 -0
- default/asnq-train-00005-of-00008.parquet +3 -0
- default/asnq-train-00006-of-00008.parquet +3 -0
- default/asnq-train-00007-of-00008.parquet +3 -0
- default/asnq-validation.parquet +3 -0
README.md
DELETED
@@ -1,224 +0,0 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- crowdsourced
|
4 |
-
language:
|
5 |
-
- en
|
6 |
-
language_creators:
|
7 |
-
- found
|
8 |
-
license:
|
9 |
-
- cc-by-nc-sa-3.0
|
10 |
-
multilinguality:
|
11 |
-
- monolingual
|
12 |
-
pretty_name: Answer Sentence Natural Questions (ASNQ)
|
13 |
-
size_categories:
|
14 |
-
- 10M<n<100M
|
15 |
-
source_datasets:
|
16 |
-
- extended|natural_questions
|
17 |
-
task_categories:
|
18 |
-
- multiple-choice
|
19 |
-
task_ids:
|
20 |
-
- multiple-choice-qa
|
21 |
-
paperswithcode_id: asnq
|
22 |
-
dataset_info:
|
23 |
-
features:
|
24 |
-
- name: question
|
25 |
-
dtype: string
|
26 |
-
- name: sentence
|
27 |
-
dtype: string
|
28 |
-
- name: label
|
29 |
-
dtype:
|
30 |
-
class_label:
|
31 |
-
names:
|
32 |
-
0: neg
|
33 |
-
1: pos
|
34 |
-
- name: sentence_in_long_answer
|
35 |
-
dtype: bool
|
36 |
-
- name: short_answer_in_sentence
|
37 |
-
dtype: bool
|
38 |
-
splits:
|
39 |
-
- name: train
|
40 |
-
num_bytes: 3656881376
|
41 |
-
num_examples: 20377568
|
42 |
-
- name: validation
|
43 |
-
num_bytes: 168005155
|
44 |
-
num_examples: 930062
|
45 |
-
download_size: 3563857920
|
46 |
-
dataset_size: 3824886531
|
47 |
-
---
|
48 |
-
|
49 |
-
# Dataset Card for "asnq"
|
50 |
-
|
51 |
-
## Table of Contents
|
52 |
-
- [Dataset Description](#dataset-description)
|
53 |
-
- [Dataset Summary](#dataset-summary)
|
54 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
55 |
-
- [Languages](#languages)
|
56 |
-
- [Dataset Structure](#dataset-structure)
|
57 |
-
- [Data Instances](#data-instances)
|
58 |
-
- [Data Fields](#data-fields)
|
59 |
-
- [Data Splits](#data-splits)
|
60 |
-
- [Dataset Creation](#dataset-creation)
|
61 |
-
- [Curation Rationale](#curation-rationale)
|
62 |
-
- [Source Data](#source-data)
|
63 |
-
- [Annotations](#annotations)
|
64 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
65 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
66 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
67 |
-
- [Discussion of Biases](#discussion-of-biases)
|
68 |
-
- [Other Known Limitations](#other-known-limitations)
|
69 |
-
- [Additional Information](#additional-information)
|
70 |
-
- [Dataset Curators](#dataset-curators)
|
71 |
-
- [Licensing Information](#licensing-information)
|
72 |
-
- [Citation Information](#citation-information)
|
73 |
-
- [Contributions](#contributions)
|
74 |
-
|
75 |
-
## Dataset Description
|
76 |
-
|
77 |
-
- **Homepage:** [https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq](https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq)
|
78 |
-
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
79 |
-
- **Paper:** [TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection](https://arxiv.org/abs/1911.04118)
|
80 |
-
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
81 |
-
- **Size of downloaded dataset files:** 3398.76 MB
|
82 |
-
- **Size of the generated dataset:** 3647.70 MB
|
83 |
-
- **Total amount of disk used:** 7046.46 MB
|
84 |
-
|
85 |
-
### Dataset Summary
|
86 |
-
|
87 |
-
ASNQ is a dataset for answer sentence selection derived from
|
88 |
-
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
|
89 |
-
|
90 |
-
Each example contains a question, candidate sentence, label indicating whether or not
|
91 |
-
the sentence answers the question, and two additional features --
|
92 |
-
sentence_in_long_answer and short_answer_in_sentence indicating whether ot not the
|
93 |
-
candidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.
|
94 |
-
|
95 |
-
For more details please see
|
96 |
-
https://arxiv.org/abs/1911.04118
|
97 |
-
|
98 |
-
and
|
99 |
-
|
100 |
-
https://research.google/pubs/pub47761/
|
101 |
-
|
102 |
-
### Supported Tasks and Leaderboards
|
103 |
-
|
104 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
105 |
-
|
106 |
-
### Languages
|
107 |
-
|
108 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
109 |
-
|
110 |
-
## Dataset Structure
|
111 |
-
|
112 |
-
### Data Instances
|
113 |
-
|
114 |
-
#### default
|
115 |
-
|
116 |
-
- **Size of downloaded dataset files:** 3398.76 MB
|
117 |
-
- **Size of the generated dataset:** 3647.70 MB
|
118 |
-
- **Total amount of disk used:** 7046.46 MB
|
119 |
-
|
120 |
-
An example of 'validation' looks as follows.
|
121 |
-
```
|
122 |
-
{
|
123 |
-
"label": 0,
|
124 |
-
"question": "when did somewhere over the rainbow come out",
|
125 |
-
"sentence": "In films and TV shows ( edit ) In the film Third Finger , Left Hand ( 1940 ) with Myrna Loy , Melvyn Douglas , and Raymond Walburn , the tune played throughout the film in short sequences .",
|
126 |
-
"sentence_in_long_answer": false,
|
127 |
-
"short_answer_in_sentence": false
|
128 |
-
}
|
129 |
-
```
|
130 |
-
|
131 |
-
### Data Fields
|
132 |
-
|
133 |
-
The data fields are the same among all splits.
|
134 |
-
|
135 |
-
#### default
|
136 |
-
- `question`: a `string` feature.
|
137 |
-
- `sentence`: a `string` feature.
|
138 |
-
- `label`: a classification label, with possible values including `neg` (0), `pos` (1).
|
139 |
-
- `sentence_in_long_answer`: a `bool` feature.
|
140 |
-
- `short_answer_in_sentence`: a `bool` feature.
|
141 |
-
|
142 |
-
### Data Splits
|
143 |
-
|
144 |
-
| name | train |validation|
|
145 |
-
|-------|-------:|---------:|
|
146 |
-
|default|20377568| 930062|
|
147 |
-
|
148 |
-
## Dataset Creation
|
149 |
-
|
150 |
-
### Curation Rationale
|
151 |
-
|
152 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
153 |
-
|
154 |
-
### Source Data
|
155 |
-
|
156 |
-
#### Initial Data Collection and Normalization
|
157 |
-
|
158 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
159 |
-
|
160 |
-
#### Who are the source language producers?
|
161 |
-
|
162 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
163 |
-
|
164 |
-
### Annotations
|
165 |
-
|
166 |
-
#### Annotation process
|
167 |
-
|
168 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
169 |
-
|
170 |
-
#### Who are the annotators?
|
171 |
-
|
172 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
173 |
-
|
174 |
-
### Personal and Sensitive Information
|
175 |
-
|
176 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
177 |
-
|
178 |
-
## Considerations for Using the Data
|
179 |
-
|
180 |
-
### Social Impact of Dataset
|
181 |
-
|
182 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
183 |
-
|
184 |
-
### Discussion of Biases
|
185 |
-
|
186 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
187 |
-
|
188 |
-
### Other Known Limitations
|
189 |
-
|
190 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
191 |
-
|
192 |
-
## Additional Information
|
193 |
-
|
194 |
-
### Dataset Curators
|
195 |
-
|
196 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
197 |
-
|
198 |
-
### Licensing Information
|
199 |
-
|
200 |
-
The data is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License:
|
201 |
-
https://github.com/alexa/wqa_tanda/blob/master/LICENSE
|
202 |
-
|
203 |
-
### Citation Information
|
204 |
-
|
205 |
-
```
|
206 |
-
@article{Garg_2020,
|
207 |
-
title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},
|
208 |
-
volume={34},
|
209 |
-
ISSN={2159-5399},
|
210 |
-
url={http://dx.doi.org/10.1609/AAAI.V34I05.6282},
|
211 |
-
DOI={10.1609/aaai.v34i05.6282},
|
212 |
-
number={05},
|
213 |
-
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
|
214 |
-
publisher={Association for the Advancement of Artificial Intelligence (AAAI)},
|
215 |
-
author={Garg, Siddhant and Vu, Thuy and Moschitti, Alessandro},
|
216 |
-
year={2020},
|
217 |
-
month={Apr},
|
218 |
-
pages={7780–7788}
|
219 |
-
}
|
220 |
-
```
|
221 |
-
|
222 |
-
### Contributions
|
223 |
-
|
224 |
-
Thanks to [@mkserge](https://github.com/mkserge) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
asnq.py
DELETED
@@ -1,150 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Answer-Sentence Natural Questions (ASNQ)
|
16 |
-
|
17 |
-
ASNQ is a dataset for answer sentence selection derived from Google's
|
18 |
-
Natural Questions (NQ) dataset (Kwiatkowski et al. 2019). It converts
|
19 |
-
NQ's dataset into an AS2 (answer-sentence-selection) format.
|
20 |
-
|
21 |
-
The dataset details can be found in the paper at
|
22 |
-
https://arxiv.org/abs/1911.04118
|
23 |
-
|
24 |
-
The dataset can be downloaded at
|
25 |
-
https://wqa-public.s3.amazonaws.com/tanda-aaai-2020/data/asnq.tar
|
26 |
-
"""
|
27 |
-
|
28 |
-
|
29 |
-
import csv
|
30 |
-
import os
|
31 |
-
|
32 |
-
import datasets
|
33 |
-
|
34 |
-
|
35 |
-
_CITATION = """\
|
36 |
-
@article{garg2019tanda,
|
37 |
-
title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},
|
38 |
-
author={Siddhant Garg and Thuy Vu and Alessandro Moschitti},
|
39 |
-
year={2019},
|
40 |
-
eprint={1911.04118},
|
41 |
-
}
|
42 |
-
"""
|
43 |
-
|
44 |
-
_DESCRIPTION = """\
|
45 |
-
ASNQ is a dataset for answer sentence selection derived from
|
46 |
-
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
|
47 |
-
|
48 |
-
Each example contains a question, candidate sentence, label indicating whether or not
|
49 |
-
the sentence answers the question, and two additional features --
|
50 |
-
sentence_in_long_answer and short_answer_in_sentence indicating whether ot not the
|
51 |
-
candidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.
|
52 |
-
|
53 |
-
For more details please see
|
54 |
-
https://arxiv.org/pdf/1911.04118.pdf
|
55 |
-
|
56 |
-
and
|
57 |
-
|
58 |
-
https://research.google/pubs/pub47761/
|
59 |
-
"""
|
60 |
-
|
61 |
-
_URL = "https://wqa-public.s3.amazonaws.com/tanda-aaai-2020/data/asnq.tar"
|
62 |
-
|
63 |
-
|
64 |
-
class ASNQ(datasets.GeneratorBasedBuilder):
|
65 |
-
"""ASNQ is a dataset for answer sentence selection derived
|
66 |
-
ASNQ is a dataset for answer sentence selection derived from
|
67 |
-
Google's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).
|
68 |
-
|
69 |
-
The dataset details can be found in the paper:
|
70 |
-
https://arxiv.org/abs/1911.04118
|
71 |
-
"""
|
72 |
-
|
73 |
-
VERSION = datasets.Version("1.0.0")
|
74 |
-
|
75 |
-
def _info(self):
|
76 |
-
|
77 |
-
return datasets.DatasetInfo(
|
78 |
-
# This is the description that will appear on the datasets page.
|
79 |
-
description=_DESCRIPTION,
|
80 |
-
# This defines the different columns of the dataset and their types
|
81 |
-
features=datasets.Features(
|
82 |
-
{
|
83 |
-
"question": datasets.Value("string"),
|
84 |
-
"sentence": datasets.Value("string"),
|
85 |
-
"label": datasets.ClassLabel(names=["neg", "pos"]),
|
86 |
-
"sentence_in_long_answer": datasets.Value("bool"),
|
87 |
-
"short_answer_in_sentence": datasets.Value("bool"),
|
88 |
-
}
|
89 |
-
),
|
90 |
-
# No default supervised_keys
|
91 |
-
supervised_keys=None,
|
92 |
-
# Homepage of the dataset for documentation
|
93 |
-
homepage="https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq",
|
94 |
-
citation=_CITATION,
|
95 |
-
)
|
96 |
-
|
97 |
-
def _split_generators(self, dl_manager):
|
98 |
-
"""Returns SplitGenerators."""
|
99 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
100 |
-
# download and extract URLs
|
101 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
102 |
-
data_dir = os.path.join(dl_dir, "data", "asnq")
|
103 |
-
return [
|
104 |
-
datasets.SplitGenerator(
|
105 |
-
name=datasets.Split.TRAIN,
|
106 |
-
# These kwargs will be passed to _generate_examples
|
107 |
-
gen_kwargs={
|
108 |
-
"filepath": os.path.join(data_dir, "train.tsv"),
|
109 |
-
"split": "train",
|
110 |
-
},
|
111 |
-
),
|
112 |
-
datasets.SplitGenerator(
|
113 |
-
name=datasets.Split.VALIDATION,
|
114 |
-
# These kwargs will be passed to _generate_examples
|
115 |
-
gen_kwargs={
|
116 |
-
"filepath": os.path.join(data_dir, "dev.tsv"),
|
117 |
-
"split": "dev",
|
118 |
-
},
|
119 |
-
),
|
120 |
-
]
|
121 |
-
|
122 |
-
def _generate_examples(self, filepath, split):
|
123 |
-
"""Yields examples.
|
124 |
-
|
125 |
-
Original dataset contains labels '1', '2', '3' and '4', with labels
|
126 |
-
'1', '2' and '3' considered negative (sentence does not answer the question),
|
127 |
-
and label '4' considered positive (sentence does answer the question).
|
128 |
-
We map these labels to two classes, returning the other properties as additional
|
129 |
-
features."""
|
130 |
-
|
131 |
-
# Mapping of dataset's original labels to a tuple of
|
132 |
-
# (label, sentence_in_long_answer, short_answer_in_sentence)
|
133 |
-
label_map = {
|
134 |
-
"1": ("neg", False, False),
|
135 |
-
"2": ("neg", False, True),
|
136 |
-
"3": ("neg", True, False),
|
137 |
-
"4": ("pos", True, True),
|
138 |
-
}
|
139 |
-
with open(filepath, encoding="utf-8") as tsvfile:
|
140 |
-
tsvreader = csv.reader(tsvfile, delimiter="\t")
|
141 |
-
for id_, row in enumerate(tsvreader):
|
142 |
-
question, sentence, orig_label = row
|
143 |
-
label, sentence_in_long_answer, short_answer_in_sentence = label_map[orig_label]
|
144 |
-
yield id_, {
|
145 |
-
"question": question,
|
146 |
-
"sentence": sentence,
|
147 |
-
"label": label,
|
148 |
-
"sentence_in_long_answer": sentence_in_long_answer,
|
149 |
-
"short_answer_in_sentence": short_answer_in_sentence,
|
150 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "ASNQ is a dataset for answer sentence selection derived from\nGoogle's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).\n\nEach example contains a question, candidate sentence, label indicating whether or not\nthe sentence answers the question, and two additional features -- \nsentence_in_long_answer and short_answer_in_sentence indicating whether ot not the \ncandidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.\n\nFor more details please see \nhttps://arxiv.org/pdf/1911.04118.pdf\n\nand \n\nhttps://research.google/pubs/pub47761/\n", "citation": "@article{garg2019tanda,\n title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},\n author={Siddhant Garg and Thuy Vu and Alessandro Moschitti},\n year={2019},\n eprint={1911.04118},\n}\n", "homepage": "https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "names_file": null, "id": null, "_type": "ClassLabel"}, "sentence_in_long_answer": {"dtype": "bool", "id": null, "_type": "Value"}, "short_answer_in_sentence": {"dtype": "bool", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "asnq", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3656881376, "num_examples": 20377568, "dataset_name": "asnq"}, "validation": {"name": "validation", "num_bytes": 168005155, "num_examples": 930062, "dataset_name": "asnq"}}, "download_checksums": {"https://wqa-public.s3.amazonaws.com/tanda-aaai-2020/data/asnq.tar": {"num_bytes": 3563857920, "checksum": "4211d3e507e7cfa345a9eea3c5222b7d79fd963cf27407555c5558c37344ddf1"}}, "download_size": 3563857920, "post_processing_size": null, "dataset_size": 3824886531, "size_in_bytes": 7388744451}}
|
|
|
|
default/asnq-train-00000-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:946a680c82fa92f0efd56e0aae379b32c4e190bb8521e72f90b28d5a4a84d667
|
3 |
+
size 327334748
|
default/asnq-train-00001-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11be1258d9ac6a1b33070be81a1c305791e6f255ea34886f21fd1e798ecb7ec6
|
3 |
+
size 327389864
|
default/asnq-train-00002-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b59fc6d4b0cffa5c855a08cb4ba2278c16b61ab523fbf035a56879cb6549e03
|
3 |
+
size 327187584
|
default/asnq-train-00003-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa7c9b67da7e0e8d88a89e91a263c97b69664aaf8c63f40908aa4dce6d0096e6
|
3 |
+
size 327236746
|
default/asnq-train-00004-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac3f17f7a6a226aa8c4081a397e4ff5a9b649a270b498911cc5f09ebcddef7b0
|
3 |
+
size 327318754
|
default/asnq-train-00005-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a00241fb25815b9449937c2fe7bfc3d33e8a4596b69a8317846495eee33ffc4
|
3 |
+
size 327287637
|
default/asnq-train-00006-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84251e7a5d8303bcf57ede22d16fd1cd5d02f1eafa956e16510c5396a0e865ba
|
3 |
+
size 327390138
|
default/asnq-train-00007-of-00008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff842712471beb47a4b80cd96b2069c121d64512c51df2f94d5fb93995b6be11
|
3 |
+
size 102243979
|
default/asnq-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08ced751e17f0a2a37db435273e8ff0b598f5641d14b97bd7a31fcc9856c008a
|
3 |
+
size 103511033
|