Datasets:

Modalities:
Image
Size:
< 1K
ArXiv:
Libraries:
Datasets
Agnuxo commited on
Commit
0fc01ba
·
verified ·
1 Parent(s): d2fc2bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +249 -0
README.md CHANGED
@@ -1,7 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # NEBULA
2
  NEBULA: Neural Entanglement-Based Unified Learning Architecture NEBULA is a dynamic and innovative artificial intelligence system designed to emulate quantum computing principles and biological neural networks.
3
  NEBULA.py https://github.com/Agnuxo1/NEBULA/blob/main/NEBULA.py
4
 
 
5
  ![Screenshot at 2024-07-16 16-39-33](https://github.com/user-attachments/assets/d38ec5a4-9654-4c90-b655-2c5b76bd41f4)
6
 
7
 
 
1
+ # Enhanced Unified Holographic Neural Network
2
+ Francisco Angulo de Lafuente
3
+
4
+ # Remember to enter your APIS for complete operation
5
+
6
+ ![Captura de pantalla 2024-12-25 113615](https://github.com/user-attachments/assets/7ace6ad6-0eb9-4421-8518-85eeb5ff891b)
7
+
8
+
9
+ ## Winner Nvidia and LlamaIndex Developers 2024
10
+
11
+ ![Captura de pantalla 2024-12-22 121110](https://github.com/user-attachments/assets/368fc18c-13da-451a-a478-00007729987e)
12
+
13
+ ![Captura de pantalla 2024-12-24 094151](https://github.com/user-attachments/assets/d5e31766-d2b2-4e7a-afaa-53e0f6a4ea9b)
14
+
15
+ ![Captura de pantalla 2024-12-24 103827](https://github.com/user-attachments/assets/4b4f7fa4-1d92-46e4-a2ad-bb7a797d6a26)
16
+
17
+ ![Captura de pantalla 2024-12-24 104031](https://github.com/user-attachments/assets/60241789-ae5e-40c0-bf7e-60ddbe897a60)
18
+
19
+
20
+ ## Project Overview
21
+
22
+ The Enhanced Unified Holographic Neural Network is an advanced AI system that combines holographic memory, neural networks, and optical computing principles. This project, developed by Francisco Angulo de Lafuente, aims to create a more efficient and powerful AI model capable of learning, storing, and retrieving information in a manner inspired by the human brain and holographic principles.
23
+
24
+ ## Key Features
25
+
26
+ - Holographic memory for efficient information storage and retrieval
27
+ - Neural network architecture for learning and pattern recognition
28
+ - Optical computing simulation for enhanced processing capabilities
29
+ - P2P network integration for distributed learning and knowledge sharing
30
+ - Real-time learning and prediction capabilities
31
+ - Integration with external LLM models for enhanced text generation
32
+ - File processing capabilities (TXT and PDF) for knowledge ingestion
33
+ - Interactive 3D visualization of the neural network
34
+
35
+ ## Ray Tracing and CUDA Acceleration
36
+
37
+ The EUHNN utilizes NVIDIA's Ray Tracing and CUDA technologies to simulate the optical neural network efficiently. Key aspects of the implementation include:
38
+
39
+ Ray Tracing: A Monte Carlo path tracing algorithm simulates the propagation of light through the holographic memory and neural network elements. The optical elements are modeled as a combination of refractive and diffractive surfaces. Lenses are simulated using thin lens approximations, while diffraction gratings are modeled using phase functions that alter the direction of incident rays based on their wavelength.
40
+
41
+ CUDA: CUDA kernels are implemented to accelerate complex optical operations such as convolutions and Fourier transforms. This allows for highly parallel computations on the GPU, significantly improving performance. Custom CUDA kernels are also used to simulate wave propagation effects and interference patterns critical for holographic computations.
42
+
43
+ RTX Hardware: The project takes advantage of RTX hardware features like RT Cores for accelerated ray-triangle intersection tests, Tensor Cores for matrix operations in neural network layers, and specialized hardware for denoising the Monte Carlo rendered results. This combination of features allows for real-time simulation of complex optical phenomena within the neural network architecture.
44
+ The integration of these technologies enables the EUHNN to perform optical neural computations at speeds comparable to traditional electronic neural networks while maintaining the advantages of optical processing, such as reduced power consumption and increased parallelism.
45
+
46
+
47
+ ## Technology Stack
48
+
49
+ - React for the frontend user interface
50
+ - Three.js and React Three Fiber for 3D visualizations
51
+ - Node.js for backend processing
52
+ - WebRTC (via PeerJS) for P2P networking
53
+ - PDF.js for PDF file processing
54
+ - LocalForage for client-side storage
55
+
56
+ ## Installation and Setup
57
+
58
+ 1. Clone the repository:
59
+ ```
60
+ git clone https://github.com/username/enhanced-holographic-neural-network.git
61
+ ```
62
+
63
+ 2. Navigate to the project directory:
64
+ ```
65
+ cd enhanced-holographic-neural-network
66
+ ```
67
+
68
+ 3. Install dependencies:
69
+ ```
70
+ npm install
71
+ ```
72
+
73
+ 4. Start the development server:
74
+ ```
75
+ npm run dev
76
+ ```
77
+
78
+ 5. Open your browser and navigate to `http://localhost:3000` to view the application.
79
+
80
+ ## Usage
81
+
82
+ 1. **Chat Interface**: Use the chat interface to interact with the AI. Type your messages and receive responses generated by the holographic neural network.
83
+
84
+ 2. **Learning**: Use the learning interface to teach the AI new associations between inputs and outputs.
85
+
86
+ 3. **File Processing**: Upload TXT or PDF files to ingest new knowledge into the system.
87
+
88
+ 4. **Knowledge Management**: Save and load the AI's knowledge base using the provided buttons.
89
+
90
+ 5. **Training**: Use the training button to run the AI through a series of random inputs and outputs to enhance its knowledge.
91
+
92
+ 6. **P2P Networking**: Connect with other instances of the application to share and distribute knowledge across the network.
93
+
94
+ 7. **3D Visualization**: Observe the real-time 3D representation of the neural network, including neurons, connections, and context nodes.
95
+
96
+ DEMO: https://v0.dev/chat/kyvoEEtAEU2
97
+
98
+ DEMO-1: https://b_ic1rgwmt8fv.v0.build/
99
+
100
+ DEMO-2: https://b_1eghmy2q0il.v0.build/
101
+
102
+
103
+
104
+ ![Captura de pantalla -2024-10-19 09-48-48](https://github.com/user-attachments/assets/cf523774-6ade-41c2-b789-57da5dc8407a)
105
+
106
+
107
+
108
+ ![Captura de pantalla -2024-10-19 09-51-04](https://github.com/user-attachments/assets/d9deb562-0013-4b9e-86a8-48d7f2b8ccb2)
109
+
110
+
111
+
112
+ ## Deploy the project and test the prototype here:
113
+
114
+ [![Open in StackBlitz](https://developer.stackblitz.com/img/open_in_stackblitz.svg)](https://stackblitz.com/edit/sb1-56sqdy)
115
+
116
+
117
+
118
+ https://github.com/user-attachments/assets/4f878d32-00fd-429c-99d3-59c66f356497
119
+
120
+
121
+
122
+ ![Captura de pantalla -2024-10-23 12-39-49](https://github.com/user-attachments/assets/98ee359c-2e58-419d-b13e-7d2fe4708b7a)
123
+
124
+
125
+
126
+ ![Captura de pantalla -2024-10-23 12-40-20](https://github.com/user-attachments/assets/97b2e360-729d-465d-9bd7-92cc360ba089)
127
+
128
+
129
+
130
+ ![Captura de pantalla -2024-10-23 12-41-22](https://github.com/user-attachments/assets/cec785b0-f91c-4ef0-90a5-f8e8911dcbf7)
131
+
132
+
133
+
134
+ ![Captura de pantalla -2024-10-23 12-41-52](https://github.com/user-attachments/assets/3cf5b849-2f27-42fa-98b6-58a5192ce288)
135
+
136
+
137
+
138
+ ![Captura de pantalla -2024-10-23 12-42-26](https://github.com/user-attachments/assets/9ba85b4a-e39e-4e05-9fba-565952174885)
139
+
140
+
141
+
142
+ DEMO 2D: https://v0.dev/chat/zxua26lZsnT?b=Nb1RXgPNUa8
143
+
144
+
145
+ ![Captura de pantalla -2024-10-25 19-42-48](https://github.com/user-attachments/assets/9b604abc-415b-4ccb-9059-35ddb8c82caa)
146
+
147
+
148
+ ![Captura de pantalla -2024-10-25 19-43-13](https://github.com/user-attachments/assets/7bba99c8-4d59-4bbd-a184-e19204e35c0c)
149
+
150
+
151
+
152
+ DEMO 3D: https://stackblitz.com/edit/sb1-evxclo?embed=1&file=package.json
153
+
154
+
155
+ ![Captura de pantalla -2024-10-25 19-44-15](https://github.com/user-attachments/assets/ff0294e3-c780-477a-924c-5c0d81079d4d)
156
+
157
+ ![Captura de pantalla -2024-10-25 19-44-39](https://github.com/user-attachments/assets/3bf92582-1f5d-4675-baba-a7cd007dc52d)
158
+
159
+ ![Captura de pantalla -2024-10-25 19-45-07](https://github.com/user-attachments/assets/695ae30e-f1a1-47ae-913d-fcb328628e30)
160
+
161
+ ![Captura de pantalla -2024-10-25 19-45-33](https://github.com/user-attachments/assets/879a986c-6bd9-46d3-bfd0-3df69a59b789)
162
+
163
+
164
+
165
+
166
+
167
+ ## Results and Discussion
168
+
169
+ The Holographic Quantum RAG Nebula presents a visually compelling and interactive way to represent and explore knowledge extracted from text. The simulation of quantum effects enhances the retrieval process and provides a novel way to conceptualize relationships between words and concepts.
170
+
171
+ Initial tests show promising results in terms of information retrieval speed and accuracy compared to traditional RAG systems. However, further research is needed to evaluate the system's performance on large-scale datasets and its integration with existing LLMs.
172
+
173
+ ## Conclusion and Future Work
174
+
175
+ The Holographic Quantum RAG Nebula offers a promising direction for developing more efficient and intuitive long-term memory systems for LLMs. Future work will focus on:
176
+
177
+ 1. Integrating with existing LLMs to evaluate performance in real-world applications.
178
+ 2. Scaling the system to handle larger datasets efficiently.
179
+ 3. Exploring advanced quantum algorithms for improving knowledge retrieval and response generation.
180
+ 4. Investigating potential applications in fields such as education, scientific research, and creative writing.
181
+
182
+ ## References
183
+
184
+ 1. Gabor, D. (1948). A New Microscopic Principle. Nature, 161(4098), 777-778.
185
+
186
+ 2. van Heerden, P. J. (1963). Theory of Optical Information Storage in Solids. Applied Optics, 2(4), 393-400.
187
+
188
+ 3. Pribram, K. H. (1969). The Neurophysiology of Remembering. Scientific American, 220(1), 73-86.
189
+
190
+ 4. Deutsch, D. (1985). Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818), 97-117.
191
+
192
+ 5. Shor, P. W. (1994). Algorithms for Quantum Computation: Discrete Logarithms and Factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science, 124-134.
193
+
194
+ 6. Grover, L. K. (1996). A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, 212-219.
195
+
196
+ 7. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information Processing Systems, 30.
197
+
198
+ 8. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
199
+
200
+ 9. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.
201
+
202
+ 10. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Advances in Neural Information Processing Systems, 33, 9459-9472.
203
+
204
+ 11. Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., ... & Leahy, C. (2020). The Pile: An 800GB Dataset of Diverse Text for Language Modeling. arXiv preprint arXiv:2101.00027.
205
+
206
+ 12. Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The Long-Document Transformer. arXiv preprint arXiv:2004.05150.
207
+
208
+ 13. Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., ... & Ahmed, A. (2020). Big Bird: Transformers for Longer Sequences. Advances in Neural Information Processing Systems, 33, 17283-17297.
209
+
210
+ 14. Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., ... & Sifre, L. (2022). Improving Language Models by Retrieving from Trillions of Tokens. arXiv preprint arXiv:2112.04426.
211
+
212
+ 15. Izacard, G., Grave, E., Joulin, A., & Usunier, N. (2022). Few-shot Learning with Retrieval Augmented Language Models. arXiv preprint arXiv:2208.03299.
213
+
214
+
215
+
216
+
217
+
218
+
219
+ ## Contributing
220
+
221
+ Contributions to the Enhanced Unified Holographic Neural Network project are welcome. Please follow these steps to contribute:
222
+
223
+ 1. Fork the repository
224
+ 2. Create a new branch (`git checkout -b feature/your-feature-name`)
225
+ 3. Commit your changes (`git commit -am 'Add some feature'`)
226
+ 4. Push to the branch (`git push origin feature/your-feature-name`)
227
+ 5. Create a new Pull Request
228
+
229
+ ## License
230
+
231
+ This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
232
+
233
+ ## Contact
234
+
235
+ Francisco Angulo de Lafuente
236
+
237
+ Project Link: [https://youtu.be/29xr5okUZ54?si=XIW2rNyYxMpRWXx-](https://youtu.be/29xr5okUZ54?si=XIW2rNyYxMpRWXx-)
238
+
239
+
240
+ ## Acknowledgments
241
+
242
+ - NVIDIA for their cutting-edge AI technologies and APIs
243
+ - The open-source community for providing invaluable tools and libraries
244
+ - All contributors and researchers in the fields of neural networks, holographic memory, and optical computing
245
+
246
+
247
+
248
+
249
  # NEBULA
250
  NEBULA: Neural Entanglement-Based Unified Learning Architecture NEBULA is a dynamic and innovative artificial intelligence system designed to emulate quantum computing principles and biological neural networks.
251
  NEBULA.py https://github.com/Agnuxo1/NEBULA/blob/main/NEBULA.py
252
 
253
+
254
  ![Screenshot at 2024-07-16 16-39-33](https://github.com/user-attachments/assets/d38ec5a4-9654-4c90-b655-2c5b76bd41f4)
255
 
256