File size: 2,900 Bytes
cb0ccdd
 
464b486
 
 
 
 
 
 
 
 
 
 
 
d6065ea
 
 
 
 
 
 
 
e350427
d6065ea
 
e350427
de89b34
 
 
 
 
 
 
 
e350427
de89b34
 
e350427
de89b34
cb0ccdd
 
 
 
 
 
 
e350427
cb0ccdd
 
e350427
cb0ccdd
464b486
 
 
 
e350427
d6065ea
 
e350427
de89b34
 
 
 
e350427
cb0ccdd
 
e350427
 
 
 
66fc144
 
 
 
96a5cb4
 
f2e5e86
66fc144
 
 
e3832c3
f40ec00
e3832c3
66fc144
e3832c3
66fc144
bd09631
66fc144
96a5cb4
66fc144
f40ec00
 
6eb011a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
dataset_info:
- config_name: pretrain_synthetic_7M
  features:
  - name: image
    dtype: image
  - name: SMILES
    dtype: string
  splits:
  - name: train
    num_bytes: 115375911760.028
    num_examples: 7720468
  download_size: 122046202421
  dataset_size: 115375911760.028
- config_name: test_markush_10k
  features:
  - name: image
    dtype: image
  - name: SMILES
    dtype: string
  splits:
  - name: train
    num_bytes: 228019568
    num_examples: 10000
  download_size: 233407872
  dataset_size: 228019568
- config_name: test_simple_10k
  features:
  - name: image
    dtype: image
  - name: SMILES
    dtype: string
  splits:
  - name: train
    num_bytes: 291640094
    num_examples: 10000
  download_size: 292074581
  dataset_size: 291640094
- config_name: valid
  features:
  - name: image
    dtype: image
  - name: SMILES
    dtype: string
  splits:
  - name: train
    num_bytes: 13538058
    num_examples: 403
  download_size: 13451383
  dataset_size: 13538058
configs:
- config_name: pretrain_synthetic_7M
  data_files:
  - split: train
    path: pretrain_synthetic_7M/train-*
- config_name: valid
  data_files:
  - split: train
    path: valid/train-*
- config_name: test_simple_10k
  data_files:
  - split: train
    path: test_simple_10k/train-*
- config_name: test_markush_10k
  data_files:
  - split: train
    path: test_markush_10k/train-*
license: mit
tags:
- chemistry
---

# MolParser-7M

**Anonymous Open Source now**

This repo provids the training data and evaluation data for MolParser, proposed in paper *“MolParser: End-to-end Visual Recognition of Molecule Structures in the Wild“*

MolParser-7M contains nearly 8 million paired image-SMILES data. It should be noted that the caption of image is our extended-SMILES format, which suggested in our paper.

* MolParser-Pretrain: More than 7.7M synthetic training data in `pretrain_synthetic_7M` subset;

* MolParser-SFT [WIP]: Nearly 400k samples for fine-tuning stage. (We have identified some annotation errors and are currently re-cleaning the data. Once completed, we will partially open-source it.)

* MolParser-Val: A small validation set carefully selected in-the-wild in `valid` subset. It can be used to quickly valid the model ability during the training process;

* WildMol-20k Benchmark [WIP]: 20k molecule structure images cropped from real patents or paper `test_simple_10k`(ordinary)subset and `test_markush_10k`(markush)subset; (We have identified some annotation errors, we will update the version)

As the paper is still **under review**, this data is provided **anonymously**. More information will be provided after the paper has been accepted.

In the future, we will continue to re-clean this dataset, open-source more data, update model checkpoints, refresh the benchmark results, and release the training code.

[**Anonymous Demo: Click Here**](http://101.126.35.171:50008/)