File size: 2,434 Bytes
cb0ccdd 464b486 d6065ea e350427 d6065ea e350427 de89b34 e350427 de89b34 e350427 de89b34 cb0ccdd e350427 cb0ccdd e350427 cb0ccdd 464b486 e350427 d6065ea e350427 de89b34 e350427 cb0ccdd e350427 66fc144 96a5cb4 f2e5e86 66fc144 96a5cb4 66fc144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
dataset_info:
- config_name: pretrain_synthetic_7M
features:
- name: image
dtype: image
- name: SMILES
dtype: string
splits:
- name: train
num_bytes: 115375911760.028
num_examples: 7720468
download_size: 122046202421
dataset_size: 115375911760.028
- config_name: test_markush_10k
features:
- name: image
dtype: image
- name: SMILES
dtype: string
splits:
- name: train
num_bytes: 228019568
num_examples: 10000
download_size: 233407872
dataset_size: 228019568
- config_name: test_simple_10k
features:
- name: image
dtype: image
- name: SMILES
dtype: string
splits:
- name: train
num_bytes: 291640094
num_examples: 10000
download_size: 292074581
dataset_size: 291640094
- config_name: valid
features:
- name: image
dtype: image
- name: SMILES
dtype: string
splits:
- name: train
num_bytes: 13538058
num_examples: 403
download_size: 13451383
dataset_size: 13538058
configs:
- config_name: pretrain_synthetic_7M
data_files:
- split: train
path: pretrain_synthetic_7M/train-*
- config_name: valid
data_files:
- split: train
path: valid/train-*
- config_name: test_simple_10k
data_files:
- split: train
path: test_simple_10k/train-*
- config_name: test_markush_10k
data_files:
- split: train
path: test_markush_10k/train-*
license: mit
tags:
- chemistry
---
# MolParser-7M
**Anonymous Open Source now**
This repo provids the training data and evaluation data for MolParser, proposed in paper *“MolParser: End-to-end Visual Recognition of Molecule Structures in the Wild“*
MolParser-7M contains nearly 8 million paired image-SMILES data. It should be noted that the caption of image is our extended-SMILES format, which suggested in our paper.
* Training Dataset: More than 7.7M training data in `pretrain_synthetic_7M` subset;
* Validation Dataset: A small validation set carefully selected in-the-wild in `valid` subset. It can be used to quickly valid the model ability during the training process;
* WildMol-20k: 20k molecule structure images cropped from real patents or paper `test_simple_10k`(ordinary)subset and `test_markush_10k`(markush)subset;
As the paper is still **under review**, this data is provided **anonymously**. More information will be provided after the paper has been accepted.
[**Anonymous Demo: Click Here**](http://180.184.38.121:50008/) |