{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "id": "YbyU8YKP5KOh" }, "outputs": [], "source": [ "# Capture to supress the download ouput\n", "%%capture\n", "!pip install datasets evaluate transformers;\n", "!pip install huggingface_hub;\n", "!pip install pandas;" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "hzlMD2hyVrtD", "outputId": "53ad9ba2-a64b-4bd8-eeca-4449035b0595" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ], "source": [ "# Load dataset with google drive\n", "# We downloaded the dataset from kaggle and uploaded it to google drive, then used google colab to load\n", "# It is possible to download it directly using the kaggle api\n", "\n", "# Link to dataset: https://www.kaggle.com/datasets/engraqeel/iot23preprocesseddata?resource=download\n", "# Link to kaggle api docs: https://www.kaggle.com/docs/api#interacting-with-datasets\n", "\n", "from google.colab import drive\n", "drive.mount('/content/drive')\n", "reduced_iot_path = \"/content/drive/MyDrive/PATH/TO/FILE/iot23_combined_new.csv\"" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "9fLFeygkITnn" }, "outputs": [], "source": [ "import pandas as pd\n", "\n", "# Define Features\n", "# ts\tuid\tid.orig_h\tid.orig_p\tid.resp_h\tid.resp_p\tproto\tservice\tduration\torig_bytes\tresp_bytes\tconn_state\tlocal_orig\tlocal_resp\tmissed_bytes\thistory\torig_pkts\torig_ip_bytes\tresp_pkts\tresp_ip_bytes\tlabel\n", "# https://docs.zeek.org/en/master/scripts/base/protocols/conn/main.zeek.html#type-Conn::Info\n", "\n", "pandas_features = {\n", " 'id.orig_p': int,\n", " 'id.resp_p': int,\n", " 'proto': str,\n", " 'service': str,\n", " 'duration': float,\n", " 'orig_bytes': pd.Int64Dtype(),\n", " 'resp_bytes': pd.Int64Dtype(),\n", " 'conn_state': str,\n", " 'missed_bytes': pd.Int64Dtype(),\n", " 'history': str,\n", " 'orig_pkts': pd.Int64Dtype(),\n", " 'orig_ip_bytes': pd.Int64Dtype(),\n", " 'resp_pkts': pd.Int64Dtype(),\n", " 'resp_ip_bytes': pd.Int64Dtype(),\n", " 'label': str\n", "}\n", "\n", "all_column_names = ['ts', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto', 'service', 'duration', 'orig_bytes', 'resp_bytes', 'conn_state', 'local_orig', 'local_resp', 'missed_bytes', 'history', 'orig_pkts', 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes', 'label'];\n", "important_column_names = ['id.resp_p', 'proto', 'conn_state', 'orig_pkts', 'orig_ip_bytes', 'resp_ip_bytes', 'label'];\n", "exclude_column_names = ['ts','uid','id.orig_h', 'id.resp_h', 'local_orig', 'local_resp']\n", "\n", "column_names = all_columns" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "Zll2DOeT9yv2" }, "outputs": [], "source": [ "# Load dataset with Pandas\n", "from datasets import Dataset\n", "import pandas as pd\n", "reduced_iot_dataset_pandas = pd.read_csv(reduced_iot_path, usecols=column_names, na_values=['-'], dtype=pandas_features)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "SUb01Eg7I7wS" }, "outputs": [], "source": [ "# Remove Duplicates\n", "reduced_iot_dataset_pandas = reduced_iot_dataset_pandas.drop_duplicates()" ] }, { "cell_type": "code", "source": [ "# Make label Benign / Malicious\n", "reduced_iot_dataset_pandas['label'] = reduced_iot_dataset_pandas['label'].apply(lambda x: \"Benign\" if x == \"Benign\" else \"Malicious\")" ], "metadata": { "id": "M06Rb8fj2fzk" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xamjYrWbgxkf", "outputId": "1ddb22b6-98ab-44b4-83e1-b995e8c1ea4a" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "orig_bytes\n", "0 564771\n", " 241092\n", "48 2121\n", "29 1463\n", "45 1348\n", " ... \n", "1088 1\n", "1093 1\n", "1094 1\n", "1104 1\n", "770 1\n", "Length: 431, dtype: int64" ] }, "metadata": {}, "execution_count": 8 } ], "source": [ "# Test distribution of data\n", "reduced_iot_dataset_pandas.value_counts('orig_bytes', dropna=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Js3KG0xNvwpf" }, "outputs": [], "source": [ "# Final step: convert to hugging face dataset\n", "reduced_iot_dataset = Dataset.from_pandas(reduced_iot_dataset_pandas).remove_columns(\"__index_level_0__\")" ] }, { "cell_type": "code", "source": [ "# Test distribution of data again\n", "reduced_iot_dataset.to_pandas().value_counts('orig_bytes', dropna=False)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "pOxVs7H-0-3k", "outputId": "dcd084dd-3369-4d8e-91ca-c9fbfc1636f0" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "orig_bytes\n", "0.0 564771\n", "NaN 241092\n", "48.0 2121\n", "29.0 1463\n", "45.0 1348\n", " ... \n", "1088.0 1\n", "1093.0 1\n", "1094.0 1\n", "1104.0 1\n", "770.0 1\n", "Length: 431, dtype: int64" ] }, "metadata": {}, "execution_count": 12 } ] }, { "cell_type": "code", "source": [ "# Authenticate hugging face\n", "!huggingface-cli login" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "pq6DF3Z8wdmF", "outputId": "aaf5e476-96ce-4edc-d65c-858a7e4e52ec" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", " _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|\n", " _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", " _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|\n", " _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", " _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|\n", " \n", " A token is already saved on your machine. Run `huggingface-cli whoami` to get more information or `huggingface-cli logout` if you want to log out.\n", " Setting a new token will erase the existing one.\n", " To login, `huggingface_hub` requires a token generated from https://huggingface.co/settings/tokens .\n", "Token: \n", "Add token as git credential? (Y/n) Y\n", "Token is valid (permission: write).\n", "Your token has been saved in your configured git credential helpers (store).\n", "Your token has been saved to /root/.cache/huggingface/token\n", "Login successful\n" ] } ] }, { "cell_type": "code", "source": [ "# Push to the hugging face hub\n", "reduced_iot_dataset.push_to_hub(\"19kmunz/iot-23-preprocessed-allcolumns\")" ], "metadata": { "id": "Nz5RwnjxwnwY" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Test loading the data set\n", "from datasets import load_dataset\n", "pulledDataSet= load_dataset(\"19kmunz/iot-23-preprocessed\", download_mode=\"force_redownload\")" ], "metadata": { "id": "6rMEA58Pzlyx" }, "execution_count": null, "outputs": [] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }