Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 256.33 +/- 18.13
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b0fa36f6830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0fa36f68c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0fa36f6950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0fa36f69e0>", "_build": "<function ActorCriticPolicy._build at 0x7b0fa36f6a70>", "forward": "<function ActorCriticPolicy.forward at 0x7b0fa36f6b00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0fa36f6b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0fa36f6c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7b0fa36f6cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0fa36f6d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0fa36f6dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0fa36f6e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b0fa3676680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4153344, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736279717638620493, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAJpx3rtcW266qD3AM+cEE6/JJle7os6iswAAgD8AAIA/gI+pvX+uAz641mM9fK2Bvm7Srzyh/Y88AAAAAAAAAAAmGVk+vS5uPAV85Tmy1yE454YAPj6aErkAAIA/AACAP5r/AD8Ur8M+QwKsO3Dwa75ZIxc+keZBvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.5846656, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6pe6Ae7tmMAWyUTUQBjAF0lEdAuYk8uvllsnV9lChoBkdAcKnINVinYWgHTTYBaAhHQLmJqa11GLF1fZQoaAZHQG3VJOvdM0xoB00NAWgIR0C5ibjjzZpSdX2UKGgGR0BvKRoK2KEWaAdNHgFoCEdAuYm73cpLEnV9lChoBkdAcYwn2IwdsGgHTRQBaAhHQLmJ8wgDA8B1fZQoaAZHQHBkyhWYF7loB00FAWgIR0C5imNo8IRidX2UKGgGR0BxD4XP7el9aAdNHwFoCEdAuYpyyE+PinV9lChoBkdAcKMRISUTtmgHTT8BaAhHQLmKeu63AmB1fZQoaAZHQHGFqWX1J19oB02IAWgIR0C5kOVoL5RCdX2UKGgGR0BvT9ihFmWdaAdNDAFoCEdAuZEWjwhGIHV9lChoBkdAbQYXsPatcWgHTRoBaAhHQLmRKVrhzeZ1fZQoaAZHQHACo8+zMRpoB00LAWgIR0C5kbeTibUgdX2UKGgGR0BuqQw/PgNxaAdNIwFoCEdAuZIC+GoJiXV9lChoBkdAcaiizcAR02gHTYACaAhHQLmSM690zTF1fZQoaAZHQHF7e23KB/ZoB01IAWgIR0C5kjaY7aIvdX2UKGgGR0Bt58cbR4QjaAdNSAFoCEdAuZKykFfReHV9lChoBkdAcRG3Td+G5GgHTRUBaAhHQLmSzZSvTw51fZQoaAZHQHMQQYpDu0FoB0v+aAhHQLmS5ZHd43Z1fZQoaAZHQGyWn3+MqBpoB00kAWgIR0C5kvkuDjBEdX2UKGgGR0Bw4vAJswcpaAdNAAFoCEdAuZNSNVBD5XV9lChoBkdAbR+YO2AoX2gHTRgBaAhHQLmTgDXOGCZ1fZQoaAZHQHAJRm9QGfRoB00XAWgIR0C5k5uBH09RdX2UKGgGR0Bv2+4TbnHOaAdNLQFoCEdAuZRTyXlbNnV9lChoBkdAcwD9cKPXCmgHTR8BaAhHQLmUhF7laKV1fZQoaAZHQG+8zRplBhRoB00ZAWgIR0C5lKLpu/DcdX2UKGgGR0Bw2gzi0fHQaAdNZAFoCEdAuZW54B3iaXV9lChoBkdAcD0Q5WBBiWgHTRwBaAhHQLmVwwIMSbp1fZQoaAZHQHAZx8twrDtoB02GAWgIR0C5lhOOfdyldX2UKGgGR0BZOFSbYsd1aAdN6ANoCEdAuZaGvgWJrXV9lChoBkdAcP4XTEzfrWgHTX4BaAhHQLmXGR5TqB51fZQoaAZHQG/m23z+WGBoB00zAWgIR0C5lx1vqC6IdX2UKGgGR0BwZFbbDdgwaAdNDgFoCEdAuZ1KyHEdenV9lChoBkdAatF5yEL6UWgHTRgBaAhHQLmd5xEfDDV1fZQoaAZHQG6p3HJcPe5oB00FAWgIR0C5niPVZs9CdX2UKGgGR0BhtXKr7wazaAdN6ANoCEdAuZ84wfyPMnV9lChoBkdAcTAfgJkXlGgHTX4BaAhHQLmfWL5AQg91fZQoaAZHQG7Iqi48U21oB00mAWgIR0C5oEpg5R0mdX2UKGgGR0BubVCswL3LaAdNJAFoCEdAuaBuCdz4lHV9lChoBkdAY4NKXfIjnmgHTegDaAhHQLmgnMB6rvN1fZQoaAZHQHE5YRujynVoB00QAWgIR0C5oTD0HyEtdX2UKGgGR0BviFYQrc0taAdNCwFoCEdAuaFKjynUD3V9lChoBkdAci9DyOJcgWgHTRMBaAhHQLmheC+10DF1fZQoaAZHQF6YRu0kWyloB03oA2gIR0C5oan2AXl9dX2UKGgGR0Bw+3JYDDCQaAdNIwFoCEdAuaIFmnO0LXV9lChoBkdAbK9sfJV81GgHTTABaAhHQLmiUvzvqkd1fZQoaAZHQHAACUkfLcNoB00IAWgIR0C5omXHvMKUdX2UKGgGR0BtSXEfkmx/aAdNIwFoCEdAuaLlg8bJfnV9lChoBkdAcdUneizsyGgHTRYBaAhHQLmjShn8Koh1fZQoaAZHQHA/mPLgXM1oB02pAWgIR0C5o8JBw++udX2UKGgGR0BwhdEfDDTCaAdNTgFoCEdAuaoUuHvc8HV9lChoBkdAZrlG6wt8NWgHTegDaAhHQLmqdoouwot1fZQoaAZHQHKPDsUqQRxoB00XAWgIR0C5qq4uscQzdX2UKGgGR0BslD5CWu5jaAdNMgFoCEdAuasVWn0kGHV9lChoBkdAcioYmb9ZR2gHTSkBaAhHQLmrZMPSUkh1fZQoaAZHQHEPY1He7+VoB00MAWgIR0C5q4BrrPdEdX2UKGgGR0Bq7RcZ9/jLaAdNKwFoCEdAuavtf9gndHV9lChoBkdAb7846Oo5xWgHTSgBaAhHQLmsQKB/Zuh1fZQoaAZHQG74r4nF5v9oB00VAWgIR0C5rE4wdsBRdX2UKGgGR0BjwY4VARkFaAdN6ANoCEdAuaxv1QIldHV9lChoBkdAcxZiTMaCMGgHTQABaAhHQLmsnWtlqah1fZQoaAZHQHHQBGUfPopoB0v7aAhHQLms5hwl0HR1fZQoaAZHQHHUdQoCuEFoB00TAWgIR0C5rOl5Sm65dX2UKGgGR0BQ6ZRoAXEZaAdL22gIR0C5rPL8vVVhdX2UKGgGR0ByU2MvRJEqaAdNJgFoCEdAua1M5bQkX3V9lChoBkdAbZdT987ZF2gHTRoBaAhHQLmtoI7eVLV1fZQoaAZHQGz9OAI6bONoB00tAWgIR0C5ratSAH3UdX2UKGgGR0Bwk27iADq4aAdNOwFoCEdAua3DGEPDpHV9lChoBkdAcKECZF5OamgHTRoBaAhHQLmuE4Wk8A91fZQoaAZHQHDQfCQ9zOpoB00XAWgIR0C5rpLx7RfGdX2UKGgGR0Bwn5reqJdjaAdNaAFoCEdAua6s6wMYuXV9lChoBkdAb5eI5YHPeGgHTQwBaAhHQLmu7ar3j+91fZQoaAZHQG1h/xlQMx5oB00tAWgIR0C5r5VQyhzvdX2UKGgGR0BrCdRHf/FSaAdNLAFoCEdAua+wjQiRn3V9lChoBkdAcN77ZWaMJmgHTQEBaAhHQLmvzbg0j1R1fZQoaAZHQHDRqttALRdoB00kAWgIR0C5tno+OfdzdX2UKGgGR0BstifpUxVRaAdNHwFoCEdAuba1+tr9EXV9lChoBkdAbvzHq/ub7WgHTUgBaAhHQLm2uMd92HN1fZQoaAZHQGNL5UcXFcZoB03oA2gIR0C5tso7Rv3rdX2UKGgGR0Bvb0JQcghbaAdNJgFoCEdAubdMR15jY3V9lChoBkdAbnVolD4QBmgHTRABaAhHQLm3b5O8Cgd1fZQoaAZHQHFLm78Nx2loB00GAWgIR0C5t4ElZ5iWdX2UKGgGR0ByYbXbuc+aaAdNSQFoCEdAubeensLORnV9lChoBkdAcT0Y287IUGgHTRYBaAhHQLm4Bf+0gKZ1fZQoaAZHQG6HasIVuaZoB00VAWgIR0C5uCOH8CPqdX2UKGgGR0BvDK3VkMCtaAdNHwFoCEdAubg2jGkvb3V9lChoBkdAcaLpM6BAfWgHTQ0BaAhHQLm4Q6Ymb9Z1fZQoaAZHQHKncLv1DjRoB00PAWgIR0C5uLOA/cFhdX2UKGgGR0Bxo/h86V+raAdL+GgIR0C5uNXenAIqdX2UKGgGR0BtJ04iosI3aAdNFwFoCEdAubj/cUM5O3V9lChoBkdAcOeo0Q9RrWgHTUwBaAhHQLm4//eLvTh1fZQoaAZHQHJXGCZnctZoB0v0aAhHQLm5UhlUZNx1fZQoaAZHQG4C5IpYs/ZoB00SAWgIR0C5uYYxL0z1dX2UKGgGR0ByMZ2r4nF6aAdL9mgIR0C5uZcAvL5idX2UKGgGR0ByZkeYD1XeaAdNKAFoCEdAubm2EWZZ0XV9lChoBkdAbrknQ6ZH/mgHTTIBaAhHQLm6HlkYoAp1fZQoaAZHQHAserMkhRtoB00RAWgIR0C5ulKxC6YmdX2UKGgGR0Bwno7CBPKuaAdNQAFoCEdAubpgIa99MXV9lChoBkdAcgi8m8dxQ2gHTVkBaAhHQLm6pDu0CzV1fZQoaAZHQG9qyt/4IrxoB00TAWgIR0C5uu8+A3DOdX2UKGgGR0BwO0La24NJaAdNHQFoCEdAubtBHhCMP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5063, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2c888bcd871b99501372fd0b66c4f4316c2bf8b2d432ade0d6e2b9ad83c30a5
|
3 |
+
size 147476
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b0fa36f6830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0fa36f68c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0fa36f6950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0fa36f69e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b0fa36f6a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b0fa36f6b00>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0fa36f6b90>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0fa36f6c20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b0fa36f6cb0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0fa36f6d40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0fa36f6dd0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0fa36f6e60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b0fa3676680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 4153344,
|
25 |
+
"_total_timesteps": 10000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1736279717638620493,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAJpx3rtcW266qD3AM+cEE6/JJle7os6iswAAgD8AAIA/gI+pvX+uAz641mM9fK2Bvm7Srzyh/Y88AAAAAAAAAAAmGVk+vS5uPAV85Tmy1yE454YAPj6aErkAAIA/AACAP5r/AD8Ur8M+QwKsO3Dwa75ZIxc+keZBvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.5846656,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6pe6Ae7tmMAWyUTUQBjAF0lEdAuYk8uvllsnV9lChoBkdAcKnINVinYWgHTTYBaAhHQLmJqa11GLF1fZQoaAZHQG3VJOvdM0xoB00NAWgIR0C5ibjjzZpSdX2UKGgGR0BvKRoK2KEWaAdNHgFoCEdAuYm73cpLEnV9lChoBkdAcYwn2IwdsGgHTRQBaAhHQLmJ8wgDA8B1fZQoaAZHQHBkyhWYF7loB00FAWgIR0C5imNo8IRidX2UKGgGR0BxD4XP7el9aAdNHwFoCEdAuYpyyE+PinV9lChoBkdAcKMRISUTtmgHTT8BaAhHQLmKeu63AmB1fZQoaAZHQHGFqWX1J19oB02IAWgIR0C5kOVoL5RCdX2UKGgGR0BvT9ihFmWdaAdNDAFoCEdAuZEWjwhGIHV9lChoBkdAbQYXsPatcWgHTRoBaAhHQLmRKVrhzeZ1fZQoaAZHQHACo8+zMRpoB00LAWgIR0C5kbeTibUgdX2UKGgGR0BuqQw/PgNxaAdNIwFoCEdAuZIC+GoJiXV9lChoBkdAcaiizcAR02gHTYACaAhHQLmSM690zTF1fZQoaAZHQHF7e23KB/ZoB01IAWgIR0C5kjaY7aIvdX2UKGgGR0Bt58cbR4QjaAdNSAFoCEdAuZKykFfReHV9lChoBkdAcRG3Td+G5GgHTRUBaAhHQLmSzZSvTw51fZQoaAZHQHMQQYpDu0FoB0v+aAhHQLmS5ZHd43Z1fZQoaAZHQGyWn3+MqBpoB00kAWgIR0C5kvkuDjBEdX2UKGgGR0Bw4vAJswcpaAdNAAFoCEdAuZNSNVBD5XV9lChoBkdAbR+YO2AoX2gHTRgBaAhHQLmTgDXOGCZ1fZQoaAZHQHAJRm9QGfRoB00XAWgIR0C5k5uBH09RdX2UKGgGR0Bv2+4TbnHOaAdNLQFoCEdAuZRTyXlbNnV9lChoBkdAcwD9cKPXCmgHTR8BaAhHQLmUhF7laKV1fZQoaAZHQG+8zRplBhRoB00ZAWgIR0C5lKLpu/DcdX2UKGgGR0Bw2gzi0fHQaAdNZAFoCEdAuZW54B3iaXV9lChoBkdAcD0Q5WBBiWgHTRwBaAhHQLmVwwIMSbp1fZQoaAZHQHAZx8twrDtoB02GAWgIR0C5lhOOfdyldX2UKGgGR0BZOFSbYsd1aAdN6ANoCEdAuZaGvgWJrXV9lChoBkdAcP4XTEzfrWgHTX4BaAhHQLmXGR5TqB51fZQoaAZHQG/m23z+WGBoB00zAWgIR0C5lx1vqC6IdX2UKGgGR0BwZFbbDdgwaAdNDgFoCEdAuZ1KyHEdenV9lChoBkdAatF5yEL6UWgHTRgBaAhHQLmd5xEfDDV1fZQoaAZHQG6p3HJcPe5oB00FAWgIR0C5niPVZs9CdX2UKGgGR0BhtXKr7wazaAdN6ANoCEdAuZ84wfyPMnV9lChoBkdAcTAfgJkXlGgHTX4BaAhHQLmfWL5AQg91fZQoaAZHQG7Iqi48U21oB00mAWgIR0C5oEpg5R0mdX2UKGgGR0BubVCswL3LaAdNJAFoCEdAuaBuCdz4lHV9lChoBkdAY4NKXfIjnmgHTegDaAhHQLmgnMB6rvN1fZQoaAZHQHE5YRujynVoB00QAWgIR0C5oTD0HyEtdX2UKGgGR0BviFYQrc0taAdNCwFoCEdAuaFKjynUD3V9lChoBkdAci9DyOJcgWgHTRMBaAhHQLmheC+10DF1fZQoaAZHQF6YRu0kWyloB03oA2gIR0C5oan2AXl9dX2UKGgGR0Bw+3JYDDCQaAdNIwFoCEdAuaIFmnO0LXV9lChoBkdAbK9sfJV81GgHTTABaAhHQLmiUvzvqkd1fZQoaAZHQHAACUkfLcNoB00IAWgIR0C5omXHvMKUdX2UKGgGR0BtSXEfkmx/aAdNIwFoCEdAuaLlg8bJfnV9lChoBkdAcdUneizsyGgHTRYBaAhHQLmjShn8Koh1fZQoaAZHQHA/mPLgXM1oB02pAWgIR0C5o8JBw++udX2UKGgGR0BwhdEfDDTCaAdNTgFoCEdAuaoUuHvc8HV9lChoBkdAZrlG6wt8NWgHTegDaAhHQLmqdoouwot1fZQoaAZHQHKPDsUqQRxoB00XAWgIR0C5qq4uscQzdX2UKGgGR0BslD5CWu5jaAdNMgFoCEdAuasVWn0kGHV9lChoBkdAcioYmb9ZR2gHTSkBaAhHQLmrZMPSUkh1fZQoaAZHQHEPY1He7+VoB00MAWgIR0C5q4BrrPdEdX2UKGgGR0Bq7RcZ9/jLaAdNKwFoCEdAuavtf9gndHV9lChoBkdAb7846Oo5xWgHTSgBaAhHQLmsQKB/Zuh1fZQoaAZHQG74r4nF5v9oB00VAWgIR0C5rE4wdsBRdX2UKGgGR0BjwY4VARkFaAdN6ANoCEdAuaxv1QIldHV9lChoBkdAcxZiTMaCMGgHTQABaAhHQLmsnWtlqah1fZQoaAZHQHHQBGUfPopoB0v7aAhHQLms5hwl0HR1fZQoaAZHQHHUdQoCuEFoB00TAWgIR0C5rOl5Sm65dX2UKGgGR0BQ6ZRoAXEZaAdL22gIR0C5rPL8vVVhdX2UKGgGR0ByU2MvRJEqaAdNJgFoCEdAua1M5bQkX3V9lChoBkdAbZdT987ZF2gHTRoBaAhHQLmtoI7eVLV1fZQoaAZHQGz9OAI6bONoB00tAWgIR0C5ratSAH3UdX2UKGgGR0Bwk27iADq4aAdNOwFoCEdAua3DGEPDpHV9lChoBkdAcKECZF5OamgHTRoBaAhHQLmuE4Wk8A91fZQoaAZHQHDQfCQ9zOpoB00XAWgIR0C5rpLx7RfGdX2UKGgGR0Bwn5reqJdjaAdNaAFoCEdAua6s6wMYuXV9lChoBkdAb5eI5YHPeGgHTQwBaAhHQLmu7ar3j+91fZQoaAZHQG1h/xlQMx5oB00tAWgIR0C5r5VQyhzvdX2UKGgGR0BrCdRHf/FSaAdNLAFoCEdAua+wjQiRn3V9lChoBkdAcN77ZWaMJmgHTQEBaAhHQLmvzbg0j1R1fZQoaAZHQHDRqttALRdoB00kAWgIR0C5tno+OfdzdX2UKGgGR0BstifpUxVRaAdNHwFoCEdAuba1+tr9EXV9lChoBkdAbvzHq/ub7WgHTUgBaAhHQLm2uMd92HN1fZQoaAZHQGNL5UcXFcZoB03oA2gIR0C5tso7Rv3rdX2UKGgGR0Bvb0JQcghbaAdNJgFoCEdAubdMR15jY3V9lChoBkdAbnVolD4QBmgHTRABaAhHQLm3b5O8Cgd1fZQoaAZHQHFLm78Nx2loB00GAWgIR0C5t4ElZ5iWdX2UKGgGR0ByYbXbuc+aaAdNSQFoCEdAubeensLORnV9lChoBkdAcT0Y287IUGgHTRYBaAhHQLm4Bf+0gKZ1fZQoaAZHQG6HasIVuaZoB00VAWgIR0C5uCOH8CPqdX2UKGgGR0BvDK3VkMCtaAdNHwFoCEdAubg2jGkvb3V9lChoBkdAcaLpM6BAfWgHTQ0BaAhHQLm4Q6Ymb9Z1fZQoaAZHQHKncLv1DjRoB00PAWgIR0C5uLOA/cFhdX2UKGgGR0Bxo/h86V+raAdL+GgIR0C5uNXenAIqdX2UKGgGR0BtJ04iosI3aAdNFwFoCEdAubj/cUM5O3V9lChoBkdAcOeo0Q9RrWgHTUwBaAhHQLm4//eLvTh1fZQoaAZHQHJXGCZnctZoB0v0aAhHQLm5UhlUZNx1fZQoaAZHQG4C5IpYs/ZoB00SAWgIR0C5uYYxL0z1dX2UKGgGR0ByMZ2r4nF6aAdL9mgIR0C5uZcAvL5idX2UKGgGR0ByZkeYD1XeaAdNKAFoCEdAubm2EWZZ0XV9lChoBkdAbrknQ6ZH/mgHTTIBaAhHQLm6HlkYoAp1fZQoaAZHQHAserMkhRtoB00RAWgIR0C5ulKxC6YmdX2UKGgGR0Bwno7CBPKuaAdNQAFoCEdAubpgIa99MXV9lChoBkdAcgi8m8dxQ2gHTVkBaAhHQLm6pDu0CzV1fZQoaAZHQG9qyt/4IrxoB00TAWgIR0C5uu8+A3DOdX2UKGgGR0BwO0La24NJaAdNHQFoCEdAubtBHhCMP3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 5063,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 4,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a0dd5634c6a7e07d7844df820eddc06fd4d44d2af4974d03881617a3dfb7138
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d810bfa885364e6abb703ac04d923242c0dc66758e51d7fc872e0797382dac0e
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (164 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.333419, "std_reward": 18.132942250566998, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-07T21:46:52.810419"}
|