Muennighoff
commited on
Commit
·
66cf324
1
Parent(s):
a01e97a
Add
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +297 -0
- 8b712b12b/2059276_2.err +0 -0
- 8b712b12b/2059276_2.out +0 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_0.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_1.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_2.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_3.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_4.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_5.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_0.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_1.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_2.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_3.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_4.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_5.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_0.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_1.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_2.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_3.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_4.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_5.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_0.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_1.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_2.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_3.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_4.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_5.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_0.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_1.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_2.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_3.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_4.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_5.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_0.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_1.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_2.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_3.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_4.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_5.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_0.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_1.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_2.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_3.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_4.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_5.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_0.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_1.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_2.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_3.json +1 -0
- 8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_4.json +1 -0
.gitattributes
CHANGED
@@ -32,3 +32,300 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
36 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
37 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
38 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
39 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:15:28.jsonl filter=lfs diff=lfs merge=lfs -text
|
40 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step173500.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
41 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step24424.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
42 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
43 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
44 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
45 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
46 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
47 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
48 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step173500.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
49 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
50 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:09.jsonl filter=lfs diff=lfs merge=lfs -text
|
51 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
52 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
53 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
54 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
55 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
56 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
57 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
58 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
59 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
60 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
61 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
62 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:09.jsonl filter=lfs diff=lfs merge=lfs -text
|
63 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
64 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
65 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
66 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
67 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
68 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
69 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
70 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
71 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
72 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
73 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
74 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
75 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
76 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
77 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
78 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
79 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
80 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
81 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
82 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
83 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
84 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
85 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step173500.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
86 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
87 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
88 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
89 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
90 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
91 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:25.jsonl filter=lfs diff=lfs merge=lfs -text
|
92 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
93 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
94 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
95 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
96 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
97 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
98 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
99 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
100 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
101 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
102 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
103 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
104 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
105 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
106 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
107 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
108 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
109 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
110 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
111 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step331103.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
112 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step33899.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
113 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
114 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
115 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
116 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:57.jsonl filter=lfs diff=lfs merge=lfs -text
|
117 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step44073.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
118 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
119 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:09.jsonl filter=lfs diff=lfs merge=lfs -text
|
120 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
121 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
122 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
123 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
124 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T17:26:45.jsonl filter=lfs diff=lfs merge=lfs -text
|
125 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
126 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
127 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
128 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
129 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
130 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
131 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
132 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
133 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
134 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
135 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
136 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
137 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
138 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
139 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
140 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
141 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
142 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
143 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
144 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
145 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
146 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
147 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:15.jsonl filter=lfs diff=lfs merge=lfs -text
|
148 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
149 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
150 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
151 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
152 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
153 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
154 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:21.jsonl filter=lfs diff=lfs merge=lfs -text
|
155 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
156 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step125429.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
157 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
158 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
159 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
160 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
161 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
162 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
163 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
164 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:14:11.jsonl filter=lfs diff=lfs merge=lfs -text
|
165 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
166 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
167 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
168 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
169 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T17:16:24.jsonl filter=lfs diff=lfs merge=lfs -text
|
170 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
171 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
172 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
173 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
174 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
175 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
176 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
177 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
178 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
179 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step24424.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
180 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:15:28.jsonl filter=lfs diff=lfs merge=lfs -text
|
181 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
182 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
183 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
184 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
185 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
186 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step331103.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
187 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T17:26:45.jsonl filter=lfs diff=lfs merge=lfs -text
|
188 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
189 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
190 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
191 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
192 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:15:28.jsonl filter=lfs diff=lfs merge=lfs -text
|
193 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
194 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
195 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
196 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
197 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
198 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
199 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
200 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
201 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
202 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
203 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
204 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:14:11.jsonl filter=lfs diff=lfs merge=lfs -text
|
205 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
206 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
207 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
208 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
209 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step173500.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
210 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
211 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
212 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
213 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
214 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
215 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
216 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:14.jsonl filter=lfs diff=lfs merge=lfs -text
|
217 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
218 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
219 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
220 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T17:26:45.jsonl filter=lfs diff=lfs merge=lfs -text
|
221 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
222 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:26.jsonl filter=lfs diff=lfs merge=lfs -text
|
223 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T12:36:04.jsonl filter=lfs diff=lfs merge=lfs -text
|
224 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:15:28.jsonl filter=lfs diff=lfs merge=lfs -text
|
225 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
226 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
227 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
228 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
229 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
230 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
231 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
232 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
233 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
234 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step24424.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
235 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step44073.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
236 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T17:16:24.jsonl filter=lfs diff=lfs merge=lfs -text
|
237 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:14.jsonl filter=lfs diff=lfs merge=lfs -text
|
238 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
239 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
240 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step24424.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
241 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step44073.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
242 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
243 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
244 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
245 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
246 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
247 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
248 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
249 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
250 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
251 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
252 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step33899.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
253 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
254 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=gem_xsum.templates=article_DOC_summary.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
255 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T12:36:04.jsonl filter=lfs diff=lfs merge=lfs -text
|
256 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
257 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
258 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
259 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:14:11.jsonl filter=lfs diff=lfs merge=lfs -text
|
260 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
261 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
262 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
263 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:15:28.jsonl filter=lfs diff=lfs merge=lfs -text
|
264 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step125429.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
265 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:15:28.jsonl filter=lfs diff=lfs merge=lfs -text
|
266 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
267 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:14:11.jsonl filter=lfs diff=lfs merge=lfs -text
|
268 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:15:28.jsonl filter=lfs diff=lfs merge=lfs -text
|
269 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
270 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
271 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
272 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
273 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:15:28.jsonl filter=lfs diff=lfs merge=lfs -text
|
274 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
275 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
276 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
277 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
278 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
279 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:26.jsonl filter=lfs diff=lfs merge=lfs -text
|
280 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
281 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
282 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
283 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step44073.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
284 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:36:47.jsonl filter=lfs diff=lfs merge=lfs -text
|
285 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
286 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T17:16:24.jsonl filter=lfs diff=lfs merge=lfs -text
|
287 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
288 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
289 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
290 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
291 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
292 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
293 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:35.jsonl filter=lfs diff=lfs merge=lfs -text
|
294 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
295 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
296 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
297 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
298 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step33899.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
299 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=gem_xsum.templates=article_DOC_summary.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
300 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
301 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T12:36:04.jsonl filter=lfs diff=lfs merge=lfs -text
|
302 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:49:56.jsonl filter=lfs diff=lfs merge=lfs -text
|
303 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=4.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
304 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
305 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
306 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
307 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
308 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T17:16:24.jsonl filter=lfs diff=lfs merge=lfs -text
|
309 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T12:36:04.jsonl filter=lfs diff=lfs merge=lfs -text
|
310 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step33899.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
311 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
312 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
313 |
+
220m7b57b5/evaluation/generation/examples.limited=3000.model=lm1-220m-7b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:09.jsonl filter=lfs diff=lfs merge=lfs -text
|
314 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step125429.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
315 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step331103.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
316 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T17:26:45.jsonl filter=lfs diff=lfs merge=lfs -text
|
317 |
+
574m174b174b/evaluation/generation/examples.limited=3000.model=lm1-574m-174b.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
318 |
+
619m2b72b7/evaluation/generation/examples.limited=3000.model=lm1-619m-2b7.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
319 |
+
83m20b20b/evaluation/generation/examples.limited=3000.model=lm1-83m-20b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:25.jsonl filter=lfs diff=lfs merge=lfs -text
|
320 |
+
1b11b51b5/evaluation/generation/examples.limited=3000.model=lm1-1b1-1b5.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
321 |
+
221m60b60b/evaluation/generation/examples.limited=3000.model=lm1-221m-60b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
322 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step331103.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
323 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T19:19:06.jsonl filter=lfs diff=lfs merge=lfs -text
|
324 |
+
8b712b12b/evaluation/generation/examples.limited=3000.model=lm1-8b7-12b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
325 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=lm1-3b9-26b.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
326 |
+
421m3b93b9/evaluation/generation/examples.limited=3000.model=lm1-421m-3b9.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=2.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
327 |
+
619m22b22b/evaluation/generation/examples.limited=3000.model=lm1-619m-22b.task=gem_xsum.templates=article_DOC_summary.fewshot=5.batchsize=16.seed=1234.timestamp=2023-01-24T15:52:02.jsonl filter=lfs diff=lfs merge=lfs -text
|
328 |
+
146m14b14b/evaluation/generation/examples.limited=3000.model=lm1-146m-14b.task=gem_xsum.templates=article_DOC_summary.fewshot=3.batchsize=16.seed=1234.timestamp=2023-01-24T16:59:52.jsonl filter=lfs diff=lfs merge=lfs -text
|
329 |
+
2b246b46b/evaluation/generation/examples.limited=3000.model=lm1-2b2-46b.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T15:09:39.jsonl filter=lfs diff=lfs merge=lfs -text
|
330 |
+
3b92b62b6/evaluation/generation/examples.limited=3000.model=global_step125429.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-22T13:43:38.jsonl filter=lfs diff=lfs merge=lfs -text
|
331 |
+
*/evaluation/examples*jsonl filter=lfs diff=lfs merge=lfs -text
|
8b712b12b/2059276_2.err
ADDED
The diff for this file is too large to render.
See raw diff
|
|
8b712b12b/2059276_2.out
ADDED
The diff for this file is too large to render.
See raw diff
|
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.27792275910272285, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.028471049230902854}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.06328841782495799, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0021025438152545077}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.24234504191717748, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004468662151891229}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.09010704276349708, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0020429229553319294}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.030903259095820652, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0015910762376457343}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.11686338467887725, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003000526408379382}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.04257233768017515, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012795809520123286}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.06129625247634207, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0020128694669740953}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.23725921177398795, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004354963640982554}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.0874551472900792, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0019129480450843135}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.060716694184931065, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002024685201343661}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.23253375526472608, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004188315968341781}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.08631711513302413, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001926946262034305}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.3059972660919751, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.02565609274070435}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.07816626192938807, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003059119640035233}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.23010351891157024, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0042256881596794355}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.09692918785243863, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0024120825291348335}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03506173607999214, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0019124611525395251}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.10756912836723988, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0027585746286892202}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.04359240214201241, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0014316214232906004}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.0728218870102292, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0027994628883904987}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.22172445707631833, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004054704032043443}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.09133645669748379, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002175898717833056}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.07367884169230911, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002865617350690951}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.2212489243899717, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004015953792832768}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.0919505545299996, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002232878144138489}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.305048024463469, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.027030897013302566}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.08195045030166093, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0031063778027128823}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.2372266160617421, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004199513846790346}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.10129430413676611, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002562519992775225}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03808306300380997, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00198723966427111}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.11286413243101538, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002847987917735716}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.046615149204906274, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001549735686580585}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.0761939603766975, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.00279221034947069}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.22821116526186389, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0039702039360469815}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.09532708300525682, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002265051151444003}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.0767852307019511, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0028379533826634645}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.22807808261576507, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003964260231474147}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.09575992338745934, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002313704771380199}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.3142788842480358, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.028846783951860393}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.09058342195772959, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003374570980206621}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.24669728326957668, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004219833543700937}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.10769457964897827, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002672308704492445}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.04218396424547191, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0022186207324429736}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.11625566635671024, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002858355580272454}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.04883748512515255, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00157543306926429}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.08265085935450169, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002960250721696979}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.2357547912464808, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.003981922028846649}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.0997583753305871, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002282681153012855}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.08413124139794352, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0030698871115047714}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.235941986105209, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003977177381705511}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.10082906095300515, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002368033519961811}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.3861033666717726, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04479814082290639}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.09082759360312902, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003324254441589194}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.25612728520676353, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004290175011968468}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.11145411957958559, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002791310884737387}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.0424290159199073, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0020772953898718013}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.12262474912429762, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0029664784684492393}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.05165290704074962, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0017112773342222798}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.08220141393006279, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002860664010900586}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.24379673606628718, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004019026947345551}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1027726300980954, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002385699571119824}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.08372683967977154, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002967329186034701}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.2444065824097477, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0040327015647143175}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.10393170479792166, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024610863458690794}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_PALM_prompt_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.36076071832046397, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.030688380616665123}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.09647084547542502, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003545153488185987}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.2555229214528272, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0043592040100291374}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.11486476551221692, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0029522523802971335}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.045002654975675134, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0021223921550982275}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.12419032043473904, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0030283845175893887}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.05384817149692235, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0018008629577634422}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.08737320718464954, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0030585797315799525}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.24362581783360865, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004088176307693007}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.10617957877573965, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0025476336329581777}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.08921498107390458, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0031856258684616516}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.2441914278685585, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004091854013700768}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.10750507085949836, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0026383306211136786}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.03345410238400311, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0009618090290908418}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.24111114926352162, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002641150740447417}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.055197075386154495, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0008763314430308267}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.0023020767429104676, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00020095143246688397}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.019349843592985135, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0011878486877463833}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.0039395153479804875, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00031951828580993233}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.0325167653576248, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0009309320647730774}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.23576426328017, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025070255958444324}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.05367668796422578, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0007985838316260541}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.025335308122139542, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0008964310119101099}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.18752705191120675, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0021366276409569398}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.041492596263887495, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.000677953625539983}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 0.03541789942675528, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.01421099405497611}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.18692869360659387, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003039881571318454}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.17608088896438337, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002909062783281116}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.15860303520225624, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021345232947544922}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.029381871801511528, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001887564781382638}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.027766970851831854, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015075123630983911}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.02354513206857594, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012349745386345398}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.15716638183746912, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002641557821200696}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.14767490001530423, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024346599883721463}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.1319346861929174, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001707137587262736}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.16686078238769092, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0027949162518762813}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.15608191534967794, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002553111934056059}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.14033456440686518, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0018621525444777209}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 1.3753301341159991, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1801667702067069}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.353703275707113, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005679241472645581}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.32921988711906414, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0043379052891925505}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.28530753627512034, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.00366759422334616}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.14887745058638682, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004210877411927009}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.13386685163465623, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0031797185675599806}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.11511170339132451, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0028195335620578603}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.2981897043191567, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004995017200665866}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.28146238179371813, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0038882057294345987}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.23979247500177492, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003153437439443789}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.31400204046451524, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00518521047601733}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.29005096442352746, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003840035685591891}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.251038969625528, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003238667910026147}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 2.1534747371994682, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.13272091646979567}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.406352367944416, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.006019613264592106}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.35305308298016996, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004402401246885412}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.31871092624574815, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003992303974681287}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.1868438212266704, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004432338514160914}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.15754913029400575, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0033008884085478393}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.14135586881439155, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0030722419871062586}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.34262261097456365, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005242518171939257}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.3009890141795422, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.003908474282152698}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.26790221671118514, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003400805878607551}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.360109585424911, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005437881004973906}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.31164724213710204, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003925984006002302}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.2806357829983764, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0034999604725300115}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 2.8250180966119993, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.17474505974239055}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.4160782556003686, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00607132365985423}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.3547553528750686, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0043747948067229545}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.3215576059962314, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004043555955136196}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.1976127368664589, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004472867942273678}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.1657353231172217, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0033591919434921595}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.1486059723016994, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0031137702465919123}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.3573942799846449, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005382462394202927}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.30828296933207044, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.003959909183655779}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.27583496905575083, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0035286797921459862}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.37550542006912896, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005636142151489327}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.3169658070663129, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0039380209115602}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.2875961915474626, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003620356954782885}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 2.9297995377887838, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1929100851238113}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_explicit-graph-description2_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.43941551397095907, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0063108538190283425}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.3605945475986834, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0042990954616903415}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.3324634484504046, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.00408918862221376}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.214218538031701, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004717061751038775}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.17276341768238607, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003439922209979133}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.1574798393966647, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0032040753193813653}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.37633003348964456, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005576636524136885}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.31360557177574216, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.003918235979426775}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.2846453658944446, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003578837171510727}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.3932207338908732, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005833331903891654}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.32080927886716, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0038972775593459725}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.2953725670763628, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0036841565716110867}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 3.074735779206527, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.12901279410088284}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 0.07632497832572166, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.007926725545712845}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.1913892214029584, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.008337460408135062}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.1948589992469961, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0032271991776425596}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.060005387177657375, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0010212740540865837}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.0034178093814158576, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0002081092909532937}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.028900180150552766, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015808627345456467}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.005815666778310188, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0003368546147138667}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.19063003056124628, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.008343191511860387}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.19031607092780733, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0031280354293836805}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.05876274965871893, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0009813863490905931}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.18497347443596668, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00840303492630042}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.14775497788215694, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002593350435784126}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.0490470185044038, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0009987087658540395}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 1.5134449650622863, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.2504981088949998}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.19602827341475168, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0036950917085328463}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.2191511476159811, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004169105218085343}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.17141178850730418, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0025570719314938067}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.04471934015089719, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002528775955262708}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.055875452079174416, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0024250746604666967}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.03766184813259553, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001634772727840154}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.16553726441768313, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003236998059030563}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.18907006431963758, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0037952337526898044}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.1441048270767269, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002118892735824471}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.17431209777471696, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0033900106710166656}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.19284621970570806, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0036192603797547216}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.15101330241083663, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0022390451371456285}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 1.7970794501258227, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.10522322157920203}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.3537373109613948, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005839401742469264}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.3681010427583682, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004931118277190479}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.2860017932222182, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003600065293992034}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.1512689025097176, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004133771382885969}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.1593224029160684, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0034078206363608514}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.11800231480476173, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0026678871057001607}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.3004056209992302, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005102449018222709}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.32134723569277956, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0046501507681181815}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.24251790475535198, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003084866376849741}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.31361003949892474, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005332581921525232}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.3208541897456935, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0042507574451195905}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.2507062571819115, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003208760976714423}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 2.205982438302051, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09799049823522285}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.3976950911725893, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.006094571108288834}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.3824682825137685, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004840978342117121}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.31229126849868005, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003737306428758331}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.18458192776955637, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004490895436124517}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.1754925179147259, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0034567319005983934}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.14026266286927194, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002941872348002283}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.3379050393629433, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005348242044573683}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.33454859476972654, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004567914234774393}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.26592637899522037, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003240233180675654}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.35337795719799203, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005607390041561279}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.3340724430456317, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004174782306377695}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.2748716905646393, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003356024164963882}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 2.447787302144559, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1544129795450339}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.4292014672584572, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.006223039736191642}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.3716164566728996, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004622552463905307}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.32190873704545125, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0037033051602994456}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.20841454380972427, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004660483803743425}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.175642277223698, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003328618369809101}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.1497066764511049, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002899834334735701}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.3704480344437777, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005524572778749874}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.32732599519205563, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00432656420683943}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.2775150647394103, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0032061162233596543}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.38563394619423114, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005780923663120004}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.32859160086261857, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004055056980801691}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.2859500848471161, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003320773311573455}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_implicit-graph-description_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 2.7167583987510717, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0714879102074391}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.444890440893955, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0063547511653158735}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.3778069234027298, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00469452609465298}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.3309167560999262, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003844411100125045}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.2218529943397127, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0048339493306487425}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.1844323664812742, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0034420529670123206}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.1584105381088322, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0030488461356479217}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.38407495872729075, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005704764704780633}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.33217136061524716, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004399453553665966}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.2854202772206337, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00339475205454734}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.3993897340839331, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005923761885361409}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.3346297857741206, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004155196152777507}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.29438231777535134, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0034917809815497446}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.11020171648801366, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003573052544529712}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.22505396146328446, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004242267322158401}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.09877969127087803, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022791623917084096}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.019658847574325056, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0011657633398916981}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.04925353725762671, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002453319928004006}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.019473670786464784, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010620088410472372}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.09660518241292908, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003084621706558782}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.20593030975230842, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0037466871401160675}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.08701783883283366, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0018581756290907082}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.09971695554726116, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003308042136300476}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.1981114585274711, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003678879275944071}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.08766742340515828, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0020231249628333663}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 0.11095298032158762, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.016056615077609235}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.1842206498632532, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0033132620962425317}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.2892257974437382, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005170928570638444}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.1798505058784216, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0025429004119467244}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.04637258629644958, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002170117975120209}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.09615797081842578, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0033205615019419356}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.04795427633541138, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0017247940874085667}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.1560201972462639, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0028571728929629087}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.2572787237485032, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004962121329611283}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.15299781378058636, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0021087075182680626}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.16260225242555185, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003016689043233237}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.2525529288159214, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004474788189965101}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.15758278227455122, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002239126027501788}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 1.1864945771194229, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.14755573427392105}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.23731620790012728, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004532561112992491}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.3964630907613438, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005313548379702353}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.22813329006593025, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0028951619404416445}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.08802301917992733, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0029452281957954365}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.16619790296619757, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0036997044129591984}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.08500432270152385, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0020413260310905945}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.20146008261953302, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0038735777188801746}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.3558545719100652, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.005206644546211523}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.1953872602374725, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0023821236198535004}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.20956465253357873, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00414701491259494}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.34452163716111556, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004586360458220362}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.19931078882740477, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0025730823423149476}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 1.1779073560280633, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.11885825053463621}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.27708494230769054, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005386937698402894}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.4103681737089763, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005230996244336569}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.250671196797908, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0033295186685378146}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.11467791251184724, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0035787160752031692}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.18299303196931907, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003728338759650772}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.10307714464986593, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0023782200259864906}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.23687980948707424, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004652565921160661}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.36884951250500914, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.005107026692492398}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.2161989542060285, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0028163636282767996}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.24614644095942487, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004924862366477265}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.3591757057535863, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004571550326135793}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.22071755344364624, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002999974623768176}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 1.4549957212177602, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1311485150843367}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.31268617684054123, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005665527951210109}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.40583059663163285, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005083225536253135}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.2705138101150496, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0035371438226636646}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.13570486649468225, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003756691929572764}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.18665656649628878, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0037228803104293936}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.11656257809131512, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002564551159783132}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.26678079721484715, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0048991588277364495}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.36260800082039596, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0049158987506799125}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.23285330741344387, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0030207489200677873}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.27637999957944975, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005174429232512354}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.3561298371853929, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004509714885638961}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.23753440093340922, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003197392291294317}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 1.606069347857476, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.14417844967720794}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_non-explicit-description_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.3340010294692919, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0060192440728427405}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.4066062205509454, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004905274628584773}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.28120983441604436, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0035517218782206805}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.15479734198909853, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004076583871510458}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.19310571595203044, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0036975446029287873}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.12643586433039114, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0025514152296565646}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.2886029139775976, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005297781372531641}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.36335587036209843, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004729476886532059}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.2436204140926312, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003050830315044413}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.29926662142833055, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0055546798508708285}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.36061034225014493, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004336935121375299}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.2500275231424441, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003213217653791044}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 1.7709817225714517, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1281243902647505}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.04607638785005664, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.001635898310833372}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.24491705130350472, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005695005791667798}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.07050067781866956, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021801617830921514}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.012958686716682951, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0007584767778176424}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.06761278847446099, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0029707178977044875}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.02021498002114316, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0011047894474987222}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.03869502554632166, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0012492259025514202}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.2206675716592769, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.005006822476318023}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.060090328584628795, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0016952531939693558}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.03998898338455275, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0014223486965493964}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.21593637045685524, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.00496208764304572}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.06130731539153041, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0019104798501133119}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 0.2864005385349397, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.035526556829957}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.39218732365123116, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005955727914637991}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.4320174438450721, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00461611253391018}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.3666351845799893, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004791564324394602}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.1778754749278207, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004084928470707114}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.19839026462156695, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00370199882491334}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.16688450595476786, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0035445549349213934}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.323209550085116, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005158055125583927}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.3656486194095034, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0042200158853881245}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.3022228846916981, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004034240294911819}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.34435332396642226, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005375251274746459}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.37948156907962305, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004136865229985723}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.3208548200802772, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004259430278433462}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 2.0947800304734043, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.21745172009732755}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.27183733055148696, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005474082726552938}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.45633614507325915, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004739719537167846}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.2664184420845666, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0036630832691375756}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.1194786078652033, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003489377761151043}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.20698213284205177, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0035765964422987463}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.11578672228557671, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0026068315766064063}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.23330940543496392, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004700586903250029}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.4114287873641398, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004636626159128386}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.23088510509833998, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0030930595989286766}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.2403764828446574, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004947267798667101}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.4013327123548077, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004173116099835359}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.234223251986254, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0032781210761806813}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 1.173985999160175, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.08594462748971816}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.29049591552202714, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005781420463132552}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.44769998701884034, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00475418520014786}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.2747573568814003, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0038380837584530672}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.12973005273210617, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003766486661211608}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.2047800311601761, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003633584302263081}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.12047588106036523, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0027360689092697185}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.25089825737929794, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005022070578536671}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.4031787766560655, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00460225042554375}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.23860745466580371, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003237700383756663}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.2587954223516137, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005276225138736969}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.3933351879408344, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004164275023419089}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.24246639736017767, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003440185739061213}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 1.3222921564494434, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09491432521659275}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.3143471275233988, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0059284804441534}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.43815258756602343, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004754649571170509}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.2843959573585284, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0038646497179469375}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.14419692577092091, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0037494367051030745}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.2069633894279574, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0036453131532315115}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.12867285305873813, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002725292001812076}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.2707104551620862, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005119280078004576}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.3926382650379241, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004533401739442896}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.246615956344715, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0032697640432209495}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.28083943605060124, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005434460892510276}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.387572308286775, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004198143232999083}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.2517974481208849, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0034693249157623975}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 1.437191183834893, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.11810408853305576}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-web_nlg_en_very-explicit-description_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.3143206377357715, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.006015183392545308}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.44185646460255146, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004752890840092769}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.2829015399481276, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0038798225864130134}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.14732811027051856, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0038983033836284603}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.21188477510757386, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0036115285354205258}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.13014297765558522, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002733763950543901}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.27277332893289324, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005266162476039644}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.396591308893055, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004535926099818444}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.24638318933431771, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00330703608117292}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.28128613789161916, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0055127698499683134}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.3912084247688946, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004207067085243756}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.2509870192649625, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0034849918660301766}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 1.5345659969721541, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0665394738136313}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.1935265848721856, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0019060454800689367}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.34919121164795086, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002753475070291269}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.23162388421715874, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0017841859923962147}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.04498145257616532, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008329782311754626}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.08515612477265402, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.001721359892260766}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.05422885983045781, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0009476380786498468}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.12928203497945912, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0011569312856479319}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.24431772631471965, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002199890210722938}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.156933800991246, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0011333731921949334}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.17885563732130022, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00175690193520611}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.3240225207018818, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0026017969273393156}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.21433671534223522, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001652487022408722}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 2.4138921046137467, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04800981190772182}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.15412481912168974, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002072424818338947}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.25388611509891695, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0030240005007528496}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.1742647715563179, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0019615179376050204}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.030154777813236597, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008851900081448214}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.052757120928831794, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015160083402255362}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.03425140885311024, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0008628733160040139}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.11341010202779632, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001437419439336662}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.19150245929060628, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0022784257730849573}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.1285562546373978, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001292631199475369}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.14283187251951976, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001906238843089823}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.23572163974932728, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002793408705472348}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.16146770703343388, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0017917548498223538}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 1.7097005086429322, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.05552482156064422}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.13504118606705542, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0019950359884804833}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.2103780811482856, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002753953153869256}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.14796159842907086, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018373771045391253}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.02224771348245712, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00076458236691707}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.03748987865876637, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0012908973795572375}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.024848915935729028, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0007516682342496174}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.1031289154703551, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0014268631494574187}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.16453477325234223, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0020819498895580852}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.11352220354010266, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00126670732315744}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.1258252892938157, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0018373762992518706}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.19658014824770717, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002556455333785507}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.13791428045404472, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0016851954913451178}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 1.2058553616925143, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.05960113430308913}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.12367717203048442, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0022629850312063334}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.17611473068931346, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002943263757949722}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.1261223944260455, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0019527183454922069}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.02168611564066448, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008985135867237363}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.03338836370871615, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.001317034756948777}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.022182073766000145, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0007669030600098955}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.0963587817581543, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0017491025501996144}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.13915485873661768, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00229254698012965}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.09781198471704838, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014047320923895096}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.11535335207770869, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002126520204987044}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.16366669257510172, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002716933443449327}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.11714964649848982, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001797832361401197}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 1.3554885411344686, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04774634998829613}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.0457388235088369, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.001840785534474129}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.061096367298965046, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0023957890711260904}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.04367372816828561, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0015913967017568405}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.008587788056302708, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0006043534299802897}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.013840387047350038, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0010535995831154072}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.008374313428413844, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0005154881120896433}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.03594574149117632, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001450616736558843}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.048812058553338325, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0019262504595329865}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.03425801524587177, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00122142040693879}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.04237447567921449, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0017116800610273647}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.05652148629937308, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0022192315060872076}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.040319277937732274, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001465172772341592}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 0.2128012060120805, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.022261046955675327}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_article_summary_en_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.007916485315570227, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0009345397270423541}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.010858059889730112, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0012060935203925475}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.0073742658642457605, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0007805680724543348}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.0013260387345459719, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0002312384225202968}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.0026910459321376353, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0005543374351455228}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.0014358161289619582, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0002324475629005538}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.006020396920508155, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0007652908549992455}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.008260324741965287, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0009362174815237365}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.005473451659874929, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0005807306213507108}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.0073240024527080365, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0008808457059745318}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.010018241569927616, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0011136480933304806}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.006776062737093839, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0007189580930950057}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 9.179317775560928e-09, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 2.844995230804978e-08}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.09249008828601099, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0018723711106494463}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.13123588781775639, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002349768118601382}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.09901739284277107, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0017229450285448748}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.012547035199335695, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0005075476469749721}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.01886461978369246, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0008065824598122972}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.013887204399487648, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0005465488992648636}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.07779958636032645, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015150437070666478}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.11235008377987643, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0019343288799451303}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.08360155049677356, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0013379917994795034}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.08599658878347369, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001750450215363663}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.12226870497727953, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0021814187357212913}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.09203967862044245, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0015893452854994555}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 0.6648734980830896, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.053612731167955056}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.1100449445729828, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0014570677180594364}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.11531121751640376, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0014905199186280988}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.09919484314445151, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0011376877525066686}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.004278456606753075, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0002721108412209536}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.00447458669408821, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00031239420928262944}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.003847912458375235, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00023604460120476507}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.08823867884794337, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001140458556094759}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.09280679763410418, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0011755208850727655}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.07906356915568387, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0008417155039577494}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.10601107833897654, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0013888225960399076}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.1113980215090579, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.001436011572075566}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.09562693432601066, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0010845263761651484}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 0.29726322103266783, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.02261892910198167}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.1235908941525963, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.001741782081040416}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.135031454801906, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0020547580543355468}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.1117643792027506, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0013974317993743057}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.009000226709295985, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0005059193443705263}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.011839953858654814, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0007166051477822744}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.008721226200572333, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00044508558215263503}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.09795400097324349, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001387390384104355}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.10647316885636825, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0015639262154055612}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.08740909364105892, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.000996272380428909}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.11832175218862398, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0016617139803075662}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.12891151892039499, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0019315696756182581}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.10680364174281501, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0013147865751520524}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 0.6787878073718571, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04953271346428668}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.11639395617969912, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00228511293824084}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.1204525006897049, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002369772489561855}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.0984446701015987, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.001682447097692774}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.013293860470881907, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008465971890082291}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.014713081715666751, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0008828516159668003}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.011161221605742403, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0005695712357139513}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.09330153958649094, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001854870372185809}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.09559668279287237, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0018364315923380015}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.0774053626999399, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0012315598971573596}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.11055087728550445, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002158837621447094}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.11433771863242649, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002237686710893487}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.09336326226622083, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0015779875275546505}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 0.9260099023240885, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04872260423151452}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.041868703779728136, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0018376913798047929}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.04391252662871608, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0019880335493338533}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.03407507029925432, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0013766957644077294}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.00500046453560198, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0004910282329301462}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.007496962276539263, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0007898067975107338}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.004590099362962086, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0003843610663439386}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.03425234857498483, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015213179095669215}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.035357656263244296, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0015905053380446262}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.027321195727002607, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0010731967979803882}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.039427082180259976, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0017273630338422482}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.041041622168296675, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0018400262746332953}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.0319076606735721, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0012777761352195994}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 0.06053507726726463, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.006895772957038089}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_rephrase_en_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.006615797679671145, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0008139655570338533}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.0074328303590301265, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0008609934195398522}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.0057044135566453255, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0006388237973405978}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.0010390726275612183, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0002813524850796481}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.0013097331609235423, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00031385458980725644}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.0008968842215155326, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00019238384381838988}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.005222400475656645, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0006568228873127773}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.005946707079155936, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0006841294351905682}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.004494662383552158, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0005014611551130947}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.006103384021052812, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0007533833410580536}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.006918023759393256, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0007986617528259979}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.005298663211961533, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0005949889836168904}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 4.028351963893922e-11, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 1.7867111689343784e-10}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.05088532466347175, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0016095077529971356}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.06984715024246813, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002030878364414322}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.05427114905810334, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0015782376131849133}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.007514833330942018, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0004532372181598496}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.010152933778537439, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0006243536878360154}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.007917729299424862, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00045990086757899114}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.04585070384865028, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0013897838648859859}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.06420260444461255, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0018327940177888767}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.049345159643752606, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0013889638671325205}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.04604594565111625, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0014454591286748926}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.06365402592569111, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.001841773111170751}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.04922540960809147, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0014189535280425673}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 0.346871614560312, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.028997759116785655}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.11328540181878317, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0014803466990342617}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.11431661784866887, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.001451692861836768}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.10040876199568638, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0011344253547223733}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.004597380305012952, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0002761795018499676}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.0045398061954468796, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0002782936935135408}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.004030372096173381, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00022755736726619028}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.09088989014860767, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0011549874277444732}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.09220628823910605, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0011589706909748256}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.08017552055298491, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0008448433248814608}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.10924070410601111, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0014128720965297676}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.11057379556733025, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0014013070439419038}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.09692543053013572, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0010842406807568734}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 0.24663789681478787, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.023274122622329505}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.12161080068107998, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0016866938337506546}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.12415966928710256, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0017952094903935132}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.10703417410781929, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0012964792228343893}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.007761906253956718, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0004591624384987354}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.008803334571146267, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0005971935496724227}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.006987625484462621, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00039568633398253246}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.09700260768397118, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0013200225021606444}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.09905521498409589, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0013941157767512076}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.08465209768600716, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0009467452859795666}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.11689129324572661, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0016173801948925319}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.11902737334075299, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0016907981318200346}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.10268045100838777, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001224624478759636}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 0.6191911818069661, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.03592307592550553}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.11373885401445656, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002304245012474742}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.10615637279050208, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002096434019295773}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.09208081162119114, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.001569518377592419}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.013134235915493056, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008999284924055406}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.011721155703721979, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0007826575913412907}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.00940305957055359, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0005070425749953732}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.0918314356344724, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0018920699981909816}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.0853349111947018, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.001659532316586812}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.0733272812532391, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0011921034351375843}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.10852751168376643, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0021923710281716168}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.1010983857806226, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0019732918561923664}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.08769244368766922, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001474024300178597}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 0.6595265305942398, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.035126061185383445}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b712b12b/eval/agg.lm1-8b7-12b_GEM-wiki_lingua_en_summarize_above_en_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.04168974437111, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0019563553388355403}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.03410630145748851, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0015674791434938295}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.030707506238659737, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0013031446860014332}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.005647183080647583, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0007345016332858335}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.0043015255081916915, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00045639066698897006}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.0037204800600828705, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00037413095120932585}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.03389940501389073, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0016024323140243922}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.02717688299945912, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0012097303055413615}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.024614316411782047, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0010195156241243355}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.03905849700333388, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0018319225921886255}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.03183636808632, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0014487818085186293}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.02862501021942299, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0011961588870086927}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 0.017129943969609377, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0052250416634772355}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-12b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 8, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|