File size: 8,300 Bytes
956e279
1
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.6990114866921079, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004888887009805971}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.4562737779493208, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004809549420929517}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.5150940910808839, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004054282953161343}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.4307024571566198, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005276581160539604}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.27484552178475224, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004350406168331502}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.30983810327293143, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004135319155984754}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.5974681521724369, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0050614329568243405}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.3878291391697164, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0045241666773479135}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.4374551467308437, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003995930860580631}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.623588192584714, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005026770729643474}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.402310523858126, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004481446026309217}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.4548550330143833, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003899518686789911}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 12.187686476415259, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.357825457832992}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-2b2-46b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}