File size: 8,326 Bytes
c305798
1
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.07619386960107366, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0027089349286304205}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.19198991540644245, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002467519180311925}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.07652166533771729, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018376254837278274}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.009056061767330275, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0006546315351076175}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.011892749649158325, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0006854673595411719}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.00709710427821123, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00047930248802245554}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.06632874130736348, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0021920104736863}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.1840872209160974, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002396273215643647}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.06923993887182295, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014903057870844691}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.06283012717221396, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0024302748207850966}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.14266349602380923, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0019019451833655722}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.0597332743960545, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001605463537501002}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 0.0070013315813987065, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences.  {% for i in references %}\n  ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.00010929695058804277}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-280m-5b9/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}