--- license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-960h-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # wav2vec2-base-960h-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5055 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2648 | 1.0 | 57 | 2.2400 | 0.15 | | 2.167 | 2.0 | 114 | 2.1032 | 0.17 | | 1.8573 | 3.0 | 171 | 1.7658 | 0.32 | | 1.5347 | 4.0 | 228 | 1.6620 | 0.45 | | 1.6134 | 5.0 | 285 | 1.5017 | 0.49 | | 1.2903 | 6.0 | 342 | 1.4639 | 0.49 | | 1.29 | 7.0 | 399 | 1.1893 | 0.66 | | 1.1094 | 8.0 | 456 | 1.1425 | 0.67 | | 1.1023 | 9.0 | 513 | 1.0173 | 0.72 | | 0.9244 | 10.0 | 570 | 0.9069 | 0.79 | | 0.7764 | 11.0 | 627 | 0.9314 | 0.74 | | 0.6899 | 12.0 | 684 | 0.7919 | 0.78 | | 0.6033 | 13.0 | 741 | 0.7145 | 0.8 | | 0.4834 | 14.0 | 798 | 0.8896 | 0.76 | | 0.4409 | 15.0 | 855 | 0.7083 | 0.82 | | 0.3653 | 16.0 | 912 | 0.5633 | 0.83 | | 0.3986 | 17.0 | 969 | 0.5475 | 0.89 | | 0.2725 | 18.0 | 1026 | 0.5044 | 0.87 | | 0.3569 | 19.0 | 1083 | 0.5044 | 0.85 | | 0.2089 | 20.0 | 1140 | 0.5055 | 0.87 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2