File size: 5,273 Bytes
0ec4340
887e80b
0ec4340
 
 
 
 
887e80b
0ec4340
 
 
 
 
 
1f111fd
0ec4340
 
 
 
 
 
 
1f111fd
 
 
 
0ec4340
246cb1d
97afb1e
246cb1d
 
39142a6
0ec4340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fc3c6d
 
0ec4340
 
 
 
7fc3c6d
 
0ec4340
 
 
 
 
 
 
ed4cc08
 
74858ca
046a7d4
74858ca
 
 
246cb1d
839307e
0ec4340
ed4cc08
 
74858ca
d502727
f2d0d08
74858ca
 
246cb1d
839307e
0ec4340
 
 
 
 
 
 
 
 
 
 
 
b23a838
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
pipeline_tag: sentence-similarity
language: fr
datasets:
- stsb_multi_mt
tags:
- Text
- Sentence Similarity
- Sentence-Embedding
- camembert-large
license: apache-2.0
model-index:
- name: sentence-camembert-large by Van Tuan DANG
  results:
  - task:
      name: Sentence-Embedding
      type: Text Similarity
    dataset:
      name: Text Similarity fr
      type: stsb_multi_mt
      args: fr
    metrics:
    - name: Test Pearson correlation coefficient
      type: Pearson_correlation_coefficient
      value: xx.xx
library_name: sentence-transformers
---
## Description:
[**Sentence-CamemBERT-Large**](https://huggingface.co/dangvantuan/sentence-camembert-large) is the Embedding Model for French developed by [La Javaness](https://www.lajavaness.com/). The purpose of this embedding model is to represent the content and semantics of a French sentence in a mathematical vector which allows it to understand the meaning of the text-beyond individual words in queries and documents, offering a powerful semantic search.
## Pre-trained sentence embedding models are state-of-the-art of Sentence Embeddings for French.
The model is Fine-tuned using pre-trained [facebook/camembert-large](https://huggingface.co/camembert/camembert-large) and
[Siamese BERT-Networks with 'sentences-transformers'](https://www.sbert.net/) on dataset [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train)


## Usage
The model can be used directly (without a language model) as follows:

```python
from sentence_transformers import SentenceTransformer
model =  SentenceTransformer("dangvantuan/sentence-camembert-large")

sentences = ["Un avion est en train de décoller.",
          "Un homme joue d'une grande flûte.",
          "Un homme étale du fromage râpé sur une pizza.",
          "Une personne jette un chat au plafond.",
          "Une personne est en train de plier un morceau de papier.",
          ]

embeddings = model.encode(sentences)
```

## Evaluation
The model can be evaluated as follows on the French test data of stsb.

```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.readers import InputExample
from datasets import load_dataset
def convert_dataset(dataset):
    dataset_samples=[]
    for df in dataset:
        score = float(df['similarity_score'])/5.0  # Normalize score to range 0 ... 1
        inp_example = InputExample(texts=[df['sentence1'], 
                                    df['sentence2']], label=score)
        dataset_samples.append(inp_example)
    return dataset_samples

# Loading the dataset for evaluation
df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev")
df_test = load_dataset("stsb_multi_mt", name="fr", split="test")

# Convert the dataset for evaluation

# For Dev set:
dev_samples = convert_dataset(df_dev)
val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
val_evaluator(model, output_path="./")

# For Test set:
test_samples = convert_dataset(df_test)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(model, output_path="./")
```

**Test Result**: 
The performance is measured using Pearson and Spearman correlation:
- On dev


| Model  | Pearson correlation | Spearman correlation  | #params  |
| ------------- | ------------- | ------------- |------------- |
| [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| 88.2 |88.02 | 336M| 
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base)  | 86.73|86.54 | 110M |
| [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 79.22 | 79.16|135M |
| [GPT-3 (text-davinci-003)](https://platform.openai.com/docs/models) | 85 | NaN|175B |
| [GPT-(text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.75 | 80.44|NaN |
- On test


| Model  | Pearson correlation | Spearman correlation  | 
| ------------- | ------------- | ------------- |
| [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| 85.9 | 85.8|
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base)| 82.36 | 81.64|
| [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 78.62 | 77.48|
| [GPT-3 (text-davinci-003)](https://platform.openai.com/docs/models) | 82 | NaN|175B |
| [GPT-(text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.05 | 77.56|NaN |


## Citation


	@article{reimers2019sentence,
	   title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
	   author={Nils Reimers, Iryna Gurevych},
	   journal={https://arxiv.org/abs/1908.10084},
	   year={2019}
	}


	@article{martin2020camembert,
	   title={CamemBERT: a Tasty French Language Mode},
	   author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
	   journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
	   year={2020}
	}