File size: 2,123 Bytes
a7122c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
library_name: transformers
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: damand2061/pfsa-id-indobert-lem
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# damand2061/pfsa-id-indobert-lem
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1353
- Validation Loss: 0.2440
- Validation F1: 0.8119
- Validation Accuracy: 0.9295
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 10440, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Validation F1 | Validation Accuracy | Epoch |
|:----------:|:---------------:|:-------------:|:-------------------:|:-----:|
| 0.4338 | 0.2589 | 0.6515 | 0.9170 | 0 |
| 0.2529 | 0.2283 | 0.7705 | 0.9276 | 1 |
| 0.2046 | 0.2272 | 0.7979 | 0.9293 | 2 |
| 0.1622 | 0.2312 | 0.8089 | 0.9303 | 3 |
| 0.1353 | 0.2440 | 0.8119 | 0.9295 | 4 |
### Framework versions
- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|