--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Accuracy: 0.87 - Loss: 0.6300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 1.8192 | 1.0 | 150 | 0.41 | 1.7706 | | 1.1745 | 2.0 | 300 | 0.64 | 1.2586 | | 0.7885 | 3.0 | 450 | 0.76 | 0.8419 | | 0.661 | 4.0 | 600 | 0.81 | 0.7019 | | 0.3334 | 5.0 | 750 | 0.84 | 0.5766 | | 0.3265 | 6.0 | 900 | 0.83 | 0.5862 | | 0.0928 | 7.0 | 1050 | 0.88 | 0.5613 | | 0.0698 | 8.0 | 1200 | 0.86 | 0.6432 | | 0.0562 | 9.0 | 1350 | 0.87 | 0.6141 | | 0.0268 | 10.0 | 1500 | 0.87 | 0.6300 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3