File size: 1,933 Bytes
2f176b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
base_model: philschmid/bart-large-cnn-samsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-samsum-dc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-samsum-dc
This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7404
- Rouge1: 32.5028
- Rouge2: 13.6008
- Rougel: 23.6102
- Rougelsum: 25.0002
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.9176 | 1.0 | 2676 | 1.7297 | 31.7614 | 13.0816 | 22.9243 | 24.6866 |
| 1.4492 | 2.0 | 5352 | 1.5775 | 32.2161 | 13.4673 | 23.7824 | 25.0772 |
| 1.1499 | 3.0 | 8028 | 1.5778 | 33.1269 | 14.0686 | 24.2058 | 25.39 |
| 0.8947 | 4.0 | 10704 | 1.6344 | 32.9016 | 13.9786 | 24.1741 | 25.5371 |
| 0.6905 | 5.0 | 13380 | 1.7404 | 32.5028 | 13.6008 | 23.6102 | 25.0002 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|