iarcuschin
commited on
Update metadata files
Browse files- benchmark_cases_metadata.csv +19 -19
- benchmark_cases_metadata.parquet +2 -2
- benchmark_metadata.json +56 -40
- benchmark_metadata_croissant.json +285 -165
benchmark_cases_metadata.csv
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
-
case_id,url,task_description,max_seq_len,min_seq_len,transformer_cfg_file_url,training_args_file_url,weights_file_url,circuit_file_url,
|
2 |
-
11,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/11,Counts the number of words in a sequence based on their length.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/edges.pkl,
|
3 |
-
13,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/13,"Analyzes the trend (increasing, decreasing, constant) of numeric tokens.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/edges.pkl,
|
4 |
-
18,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/18,"Classify each token based on its frequency as 'rare', 'common', or 'frequent'.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/edges.pkl,
|
5 |
-
19,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/19,Removes consecutive duplicate tokens from a sequence.,15,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/edges.pkl,
|
6 |
-
20,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/20,Detect spam messages based on appearance of spam keywords.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/edges.pkl,
|
7 |
-
21,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/21,Extract unique tokens from a string,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/edges.pkl,
|
8 |
-
26,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/26,Creates a cascading effect by repeating each token in sequence incrementally.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/edges.pkl,
|
9 |
-
29,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/29,Creates abbreviations for each token in the sequence.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/edges.pkl,
|
10 |
-
3,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/3,Returns the fraction of 'x' in the input up to the i-th position for all i.,5,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/edges.pkl,
|
11 |
-
33,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/33,Checks if each token's length is odd or even.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/edges.pkl,
|
12 |
-
34,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/34,Calculate the ratio of vowels to consonants in each word.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/edges.pkl,
|
13 |
-
35,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/35,Alternates capitalization of each character in words.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/edges.pkl,
|
14 |
-
36,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/36,"Classifies each token as 'positive', 'negative', or 'neutral' based on emojis.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/edges.pkl,
|
15 |
-
37,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/37,Reverses each word in the sequence except for specified exclusions.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/edges.pkl,
|
16 |
-
4,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/4,Return fraction of previous open tokens minus the fraction of close tokens.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/edges.pkl,
|
17 |
-
|
18 |
-
ioi,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi,Indirect
|
19 |
-
ioi_next_token,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi_next_token,Indirect
|
|
|
1 |
+
case_id,url,task_description,max_seq_len,min_seq_len,transformer_cfg_file_url,training_args_file_url,weights_file_url,circuit_file_url,transformer_cfg.n_layers,transformer_cfg.d_model,transformer_cfg.n_ctx,transformer_cfg.d_head,transformer_cfg.model_name,transformer_cfg.n_heads,transformer_cfg.d_mlp,transformer_cfg.act_fn,transformer_cfg.d_vocab,transformer_cfg.eps,transformer_cfg.use_attn_result,transformer_cfg.use_attn_scale,transformer_cfg.use_split_qkv_input,transformer_cfg.use_hook_mlp_in,transformer_cfg.use_attn_in,transformer_cfg.use_local_attn,transformer_cfg.original_architecture,transformer_cfg.from_checkpoint,transformer_cfg.tokenizer_name,transformer_cfg.init_mode,transformer_cfg.normalization_type,transformer_cfg.n_devices,transformer_cfg.attention_dir,transformer_cfg.attn_only,transformer_cfg.seed,transformer_cfg.initializer_range,transformer_cfg.init_weights,transformer_cfg.scale_attn_by_inverse_layer_idx,transformer_cfg.positional_embedding_type,transformer_cfg.final_rms,transformer_cfg.d_vocab_out,transformer_cfg.parallel_attn_mlp,transformer_cfg.n_params,transformer_cfg.use_hook_tokens,transformer_cfg.gated_mlp,transformer_cfg.default_prepend_bos,transformer_cfg.dtype,transformer_cfg.tokenizer_prepends_bos,transformer_cfg.post_embedding_ln,transformer_cfg.rotary_base,transformer_cfg.trust_remote_code,transformer_cfg.rotary_adjacent_pairs,training_args.atol,training_args.lr,training_args.use_single_loss,training_args.iit_weight,training_args.behavior_weight,training_args.strict_weight,training_args.epochs,training_args.act_fn,training_args.clip_grad_norm,training_args.lr_scheduler,training_args.model_pair,training_args.same_size,training_args.seed,training_args.batch_size,training_args.include_mlp,training_args.next_token,training_args.detach_while_caching,training_args.non_ioi_thresh,training_args.use_per_token_check,training_args.num_workers,training_args.early_stop,training_args.scheduler_val_metric,training_args.scheduler_mode,training_args.val_IIA_sampling,training_args.use_all_tokens_for_behavior,training_args.siit_sampling,training_args.optimizer_kwargs.betas
|
2 |
+
11,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/11,Counts the number of words in a sequence based on their length.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/edges.pkl,2,12,10,3,custom,4,48,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1460593486680443,True,False,standard,False,5,False,3456,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,500.0,gelu,1.0,,,True,,,True,True,True,,True,,True,,,,True,,
|
3 |
+
13,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/13,"Analyzes the trend (increasing, decreasing, constant) of numeric tokens.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/edges.pkl,2,20,10,5,custom,4,80,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,bidirectional,False,0.0,0.1460593486680443,True,False,standard,False,3,False,9600,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,500.0,gelu,1.0,,,True,,,True,True,True,,True,,True,,,,True,,
|
4 |
+
18,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/18,"Classify each token based on its frequency as 'rare', 'common', or 'frequent'.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/edges.pkl,2,26,10,6,custom,4,104,gelu,7,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,bidirectional,False,0.0,0.12344267996967354,True,False,standard,False,3,False,15808,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
|
5 |
+
19,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/19,Removes consecutive duplicate tokens from a sequence.,15,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/edges.pkl,2,32,15,8,custom,4,128,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.15689290811054724,True,False,standard,False,3,False,24576,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,2000.0,gelu,0.1,,,True,,,True,True,True,,True,,True,,,,True,,
|
6 |
+
20,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/20,Detect spam messages based on appearance of spam keywords.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/edges.pkl,2,13,10,3,custom,4,52,gelu,14,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.16,True,False,standard,False,2,False,3952,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
|
7 |
+
21,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/21,Extract unique tokens from a string,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/edges.pkl,4,50,10,12,custom,4,200,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.09847319278346618,True,False,standard,False,3,False,118400,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.0005,False,1.0,1.0,0.5,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
|
8 |
+
26,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/26,Creates a cascading effect by repeating each token in sequence incrementally.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/edges.pkl,2,21,10,5,custom,4,84,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.12344267996967354,True,False,standard,False,27,False,10416,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
|
9 |
+
29,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/29,Creates abbreviations for each token in the sequence.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/edges.pkl,2,13,10,3,custom,4,52,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1539600717839002,True,False,standard,False,8,False,3952,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
|
10 |
+
3,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/3,Returns the fraction of 'x' in the input up to the i-th position for all i.,5,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/edges.pkl,2,12,5,3,custom,4,48,gelu,6,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.22188007849009167,True,False,standard,False,1,False,3456,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,10.0,2000.0,gelu,0.1,,strict,False,,,True,True,True,,True,,True,,,,True,,
|
11 |
+
33,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/33,Checks if each token's length is odd or even.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/edges.pkl,2,4,10,1,custom,4,16,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.17457431218879393,True,False,standard,False,2,False,384,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,2000.0,gelu,0.1,,,True,,,True,True,True,,True,,True,,,,True,,
|
12 |
+
34,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/34,Calculate the ratio of vowels to consonants in each word.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/edges.pkl,2,16,10,4,custom,4,64,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.16329931618554522,True,False,standard,False,5,False,6144,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
|
13 |
+
35,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/35,Alternates capitalization of each character in words.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/edges.pkl,2,9,10,2,custom,4,36,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1539600717839002,True,False,standard,False,8,False,1872,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
|
14 |
+
36,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/36,"Classifies each token as 'positive', 'negative', or 'neutral' based on emojis.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/edges.pkl,2,6,10,1,custom,4,24,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.19402850002906638,True,False,standard,False,3,False,768,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
|
15 |
+
37,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/37,Reverses each word in the sequence except for specified exclusions.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/edges.pkl,2,12,10,3,custom,4,48,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1539600717839002,True,False,standard,False,8,False,3456,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
|
16 |
+
4,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/4,Return fraction of previous open tokens minus the fraction of close tokens.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/edges.pkl,2,20,10,5,custom,4,80,gelu,7,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.17056057308448835,True,False,standard,False,1,False,9600,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,2000.0,gelu,0.1,,,True,,,True,True,True,,True,,True,,,,True,,
|
17 |
+
7,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/7,Returns the number of times each token occurs in the input.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/edges.pkl,2,17,10,4,custom,4,68,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,bidirectional,False,0.0,0.15689290811054724,True,False,standard,False,10,False,6800,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.5,2000.0,gelu,0.1,,strict,False,1234.0,256.0,False,False,True,,True,,True,,,,True,,
|
18 |
+
ioi,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi,Indirect Object Identification (IOI) task.,16,16,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/edges.pkl,6,64,1024,16,gpt2,4,3072,gelu_new,50257,1e-05,False,True,False,False,False,False,GPT2LMHeadModel,False,gpt2,gpt2,LNPre,1,causal,False,,0.02886751345948129,False,False,standard,False,50257,False,84934656,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,,,1.0,,,True,0.0,512.0,True,False,True,0.65,False,0.0,True,"val/accuracy,val/IIA",max,random,False,individual,"0.9,0.9"
|
19 |
+
ioi_next_token,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi_next_token,"Indirect Object Identification (IOI) task, trained using next token prediction.",16,16,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/edges.pkl,6,64,1024,16,gpt2,4,3072,gelu_new,50257,1e-05,False,True,False,False,False,False,GPT2LMHeadModel,False,gpt2,gpt2,LNPre,1,causal,False,,0.02886751345948129,True,False,standard,False,50257,False,2457600,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,,,1.0,,,True,,256.0,True,True,True,0.65,False,0.0,True,"val/accuracy,val/IIA",max,,True,,
|
benchmark_cases_metadata.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9901890c05e11095ebb3dbd5710284edd09c37b40422eec02a126231f62f63d1
|
3 |
+
size 64382
|
benchmark_metadata.json
CHANGED
@@ -891,7 +891,7 @@
|
|
891 |
"transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model_cfg.pkl",
|
892 |
"training_args": {
|
893 |
"atol": 0.05,
|
894 |
-
"lr": 0.
|
895 |
"use_single_loss": false,
|
896 |
"iit_weight": 1.0,
|
897 |
"behavior_weight": 1.0,
|
@@ -899,7 +899,9 @@
|
|
899 |
"epochs": 2000,
|
900 |
"act_fn": "gelu",
|
901 |
"clip_grad_norm": 0.1,
|
902 |
-
"lr_scheduler": ""
|
|
|
|
|
903 |
},
|
904 |
"training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/meta.json",
|
905 |
"weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model.pth",
|
@@ -1514,49 +1516,44 @@
|
|
1514 |
"circuit_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/edges.pkl"
|
1515 |
},
|
1516 |
{
|
1517 |
-
"case_id": "
|
1518 |
-
"url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/
|
1519 |
-
"task_description": "
|
1520 |
"vocab": [
|
1521 |
-
"
|
1522 |
-
"LB",
|
1523 |
-
"TPSI",
|
1524 |
-
"V",
|
1525 |
"b",
|
1526 |
-
"
|
1527 |
-
"oCLrZaW",
|
1528 |
-
"poiVg"
|
1529 |
],
|
1530 |
"max_seq_len": 10,
|
1531 |
"min_seq_len": 4,
|
1532 |
"files": [
|
1533 |
{
|
1534 |
"file_name": "edges.pkl",
|
1535 |
-
"url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/
|
1536 |
},
|
1537 |
{
|
1538 |
"file_name": "ll_model.pth",
|
1539 |
-
"url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/
|
1540 |
},
|
1541 |
{
|
1542 |
"file_name": "ll_model_cfg.pkl",
|
1543 |
-
"url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/
|
1544 |
},
|
1545 |
{
|
1546 |
"file_name": "meta.json",
|
1547 |
-
"url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/
|
1548 |
}
|
1549 |
],
|
1550 |
"transformer_cfg": {
|
1551 |
"n_layers": 2,
|
1552 |
-
"d_model":
|
1553 |
"n_ctx": 10,
|
1554 |
-
"d_head":
|
1555 |
"model_name": "custom",
|
1556 |
"n_heads": 4,
|
1557 |
-
"d_mlp":
|
1558 |
"act_fn": "gelu",
|
1559 |
-
"d_vocab":
|
1560 |
"eps": 1e-05,
|
1561 |
"use_attn_result": true,
|
1562 |
"use_attn_scale": true,
|
@@ -1575,18 +1572,18 @@
|
|
1575 |
"init_mode": "gpt2",
|
1576 |
"normalization_type": null,
|
1577 |
"n_devices": 1,
|
1578 |
-
"attention_dir": "
|
1579 |
"attn_only": false,
|
1580 |
"seed": 0,
|
1581 |
-
"initializer_range": 0.
|
1582 |
"init_weights": true,
|
1583 |
"scale_attn_by_inverse_layer_idx": false,
|
1584 |
"positional_embedding_type": "standard",
|
1585 |
"final_rms": false,
|
1586 |
-
"d_vocab_out":
|
1587 |
"parallel_attn_mlp": false,
|
1588 |
"rotary_dim": null,
|
1589 |
-
"n_params":
|
1590 |
"use_hook_tokens": false,
|
1591 |
"gated_mlp": false,
|
1592 |
"default_prepend_bos": true,
|
@@ -1598,27 +1595,34 @@
|
|
1598 |
"trust_remote_code": false,
|
1599 |
"rotary_adjacent_pairs": false
|
1600 |
},
|
1601 |
-
"transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/
|
1602 |
"training_args": {
|
1603 |
"atol": 0.05,
|
1604 |
"lr": 0.01,
|
1605 |
"use_single_loss": false,
|
1606 |
"iit_weight": 1.0,
|
1607 |
"behavior_weight": 1.0,
|
1608 |
-
"strict_weight": 0.
|
1609 |
-
"epochs":
|
1610 |
"act_fn": "gelu",
|
1611 |
-
"clip_grad_norm": 1
|
1612 |
-
"lr_scheduler": ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1613 |
},
|
1614 |
-
"training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/
|
1615 |
-
"weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/
|
1616 |
-
"circuit_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/
|
1617 |
},
|
1618 |
{
|
1619 |
"case_id": "ioi",
|
1620 |
"url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi",
|
1621 |
-
"task_description": "Indirect
|
1622 |
"max_seq_len": 16,
|
1623 |
"min_seq_len": 16,
|
1624 |
"files": [
|
@@ -1671,14 +1675,14 @@
|
|
1671 |
"attn_only": false,
|
1672 |
"seed": null,
|
1673 |
"initializer_range": 0.02886751345948129,
|
1674 |
-
"init_weights":
|
1675 |
"scale_attn_by_inverse_layer_idx": false,
|
1676 |
"positional_embedding_type": "standard",
|
1677 |
"final_rms": false,
|
1678 |
"d_vocab_out": 50257,
|
1679 |
"parallel_attn_mlp": false,
|
1680 |
"rotary_dim": null,
|
1681 |
-
"n_params":
|
1682 |
"use_hook_tokens": false,
|
1683 |
"gated_mlp": false,
|
1684 |
"default_prepend_bos": true,
|
@@ -1692,11 +1696,10 @@
|
|
1692 |
},
|
1693 |
"transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model_cfg.pkl",
|
1694 |
"training_args": {
|
1695 |
-
"next_token":
|
1696 |
"non_ioi_thresh": 0.65,
|
1697 |
"use_per_token_check": false,
|
1698 |
-
"batch_size":
|
1699 |
-
"lr": 0.001,
|
1700 |
"num_workers": 0,
|
1701 |
"early_stop": true,
|
1702 |
"lr_scheduler": null,
|
@@ -1705,12 +1708,25 @@
|
|
1705 |
"val/IIA"
|
1706 |
],
|
1707 |
"scheduler_mode": "max",
|
|
|
1708 |
"clip_grad_norm": 1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1709 |
"atol": 0.05,
|
1710 |
"use_single_loss": false,
|
1711 |
"iit_weight": 1.0,
|
1712 |
"behavior_weight": 1.0,
|
1713 |
-
"
|
|
|
|
|
|
|
1714 |
},
|
1715 |
"training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/meta.json",
|
1716 |
"weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model.pth",
|
@@ -1719,7 +1735,7 @@
|
|
1719 |
{
|
1720 |
"case_id": "ioi_next_token",
|
1721 |
"url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi_next_token",
|
1722 |
-
"task_description": "Indirect
|
1723 |
"max_seq_len": 16,
|
1724 |
"min_seq_len": 16,
|
1725 |
"files": [
|
|
|
891 |
"transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model_cfg.pkl",
|
892 |
"training_args": {
|
893 |
"atol": 0.05,
|
894 |
+
"lr": 0.01,
|
895 |
"use_single_loss": false,
|
896 |
"iit_weight": 1.0,
|
897 |
"behavior_weight": 1.0,
|
|
|
899 |
"epochs": 2000,
|
900 |
"act_fn": "gelu",
|
901 |
"clip_grad_norm": 0.1,
|
902 |
+
"lr_scheduler": "",
|
903 |
+
"model_pair": "strict",
|
904 |
+
"same_size": false
|
905 |
},
|
906 |
"training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/meta.json",
|
907 |
"weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model.pth",
|
|
|
1516 |
"circuit_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/edges.pkl"
|
1517 |
},
|
1518 |
{
|
1519 |
+
"case_id": "7",
|
1520 |
+
"url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/7",
|
1521 |
+
"task_description": "Returns the number of times each token occurs in the input.",
|
1522 |
"vocab": [
|
1523 |
+
"a",
|
|
|
|
|
|
|
1524 |
"b",
|
1525 |
+
"c"
|
|
|
|
|
1526 |
],
|
1527 |
"max_seq_len": 10,
|
1528 |
"min_seq_len": 4,
|
1529 |
"files": [
|
1530 |
{
|
1531 |
"file_name": "edges.pkl",
|
1532 |
+
"url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/edges.pkl"
|
1533 |
},
|
1534 |
{
|
1535 |
"file_name": "ll_model.pth",
|
1536 |
+
"url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model.pth"
|
1537 |
},
|
1538 |
{
|
1539 |
"file_name": "ll_model_cfg.pkl",
|
1540 |
+
"url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model_cfg.pkl"
|
1541 |
},
|
1542 |
{
|
1543 |
"file_name": "meta.json",
|
1544 |
+
"url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/meta.json"
|
1545 |
}
|
1546 |
],
|
1547 |
"transformer_cfg": {
|
1548 |
"n_layers": 2,
|
1549 |
+
"d_model": 17,
|
1550 |
"n_ctx": 10,
|
1551 |
+
"d_head": 4,
|
1552 |
"model_name": "custom",
|
1553 |
"n_heads": 4,
|
1554 |
+
"d_mlp": 68,
|
1555 |
"act_fn": "gelu",
|
1556 |
+
"d_vocab": 5,
|
1557 |
"eps": 1e-05,
|
1558 |
"use_attn_result": true,
|
1559 |
"use_attn_scale": true,
|
|
|
1572 |
"init_mode": "gpt2",
|
1573 |
"normalization_type": null,
|
1574 |
"n_devices": 1,
|
1575 |
+
"attention_dir": "bidirectional",
|
1576 |
"attn_only": false,
|
1577 |
"seed": 0,
|
1578 |
+
"initializer_range": 0.15689290811054724,
|
1579 |
"init_weights": true,
|
1580 |
"scale_attn_by_inverse_layer_idx": false,
|
1581 |
"positional_embedding_type": "standard",
|
1582 |
"final_rms": false,
|
1583 |
+
"d_vocab_out": 10,
|
1584 |
"parallel_attn_mlp": false,
|
1585 |
"rotary_dim": null,
|
1586 |
+
"n_params": 6800,
|
1587 |
"use_hook_tokens": false,
|
1588 |
"gated_mlp": false,
|
1589 |
"default_prepend_bos": true,
|
|
|
1595 |
"trust_remote_code": false,
|
1596 |
"rotary_adjacent_pairs": false
|
1597 |
},
|
1598 |
+
"transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model_cfg.pkl",
|
1599 |
"training_args": {
|
1600 |
"atol": 0.05,
|
1601 |
"lr": 0.01,
|
1602 |
"use_single_loss": false,
|
1603 |
"iit_weight": 1.0,
|
1604 |
"behavior_weight": 1.0,
|
1605 |
+
"strict_weight": 0.5,
|
1606 |
+
"epochs": 2000,
|
1607 |
"act_fn": "gelu",
|
1608 |
+
"clip_grad_norm": 0.1,
|
1609 |
+
"lr_scheduler": "",
|
1610 |
+
"model_pair": "strict",
|
1611 |
+
"same_size": false,
|
1612 |
+
"seed": 1234,
|
1613 |
+
"batch_size": 256,
|
1614 |
+
"include_mlp": false,
|
1615 |
+
"next_token": false,
|
1616 |
+
"detach_while_caching": true
|
1617 |
},
|
1618 |
+
"training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/meta.json",
|
1619 |
+
"weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model.pth",
|
1620 |
+
"circuit_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/edges.pkl"
|
1621 |
},
|
1622 |
{
|
1623 |
"case_id": "ioi",
|
1624 |
"url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi",
|
1625 |
+
"task_description": "Indirect Object Identification (IOI) task.",
|
1626 |
"max_seq_len": 16,
|
1627 |
"min_seq_len": 16,
|
1628 |
"files": [
|
|
|
1675 |
"attn_only": false,
|
1676 |
"seed": null,
|
1677 |
"initializer_range": 0.02886751345948129,
|
1678 |
+
"init_weights": false,
|
1679 |
"scale_attn_by_inverse_layer_idx": false,
|
1680 |
"positional_embedding_type": "standard",
|
1681 |
"final_rms": false,
|
1682 |
"d_vocab_out": 50257,
|
1683 |
"parallel_attn_mlp": false,
|
1684 |
"rotary_dim": null,
|
1685 |
+
"n_params": 84934656,
|
1686 |
"use_hook_tokens": false,
|
1687 |
"gated_mlp": false,
|
1688 |
"default_prepend_bos": true,
|
|
|
1696 |
},
|
1697 |
"transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model_cfg.pkl",
|
1698 |
"training_args": {
|
1699 |
+
"next_token": false,
|
1700 |
"non_ioi_thresh": 0.65,
|
1701 |
"use_per_token_check": false,
|
1702 |
+
"batch_size": 512,
|
|
|
1703 |
"num_workers": 0,
|
1704 |
"early_stop": true,
|
1705 |
"lr_scheduler": null,
|
|
|
1708 |
"val/IIA"
|
1709 |
],
|
1710 |
"scheduler_mode": "max",
|
1711 |
+
"scheduler_kwargs": {},
|
1712 |
"clip_grad_norm": 1.0,
|
1713 |
+
"seed": 0,
|
1714 |
+
"lr": 0.001,
|
1715 |
+
"detach_while_caching": true,
|
1716 |
+
"optimizer_kwargs": {
|
1717 |
+
"betas": [
|
1718 |
+
0.9,
|
1719 |
+
0.9
|
1720 |
+
]
|
1721 |
+
},
|
1722 |
"atol": 0.05,
|
1723 |
"use_single_loss": false,
|
1724 |
"iit_weight": 1.0,
|
1725 |
"behavior_weight": 1.0,
|
1726 |
+
"val_IIA_sampling": "random",
|
1727 |
+
"use_all_tokens_for_behavior": false,
|
1728 |
+
"strict_weight": 0.4,
|
1729 |
+
"siit_sampling": "individual"
|
1730 |
},
|
1731 |
"training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/meta.json",
|
1732 |
"weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model.pth",
|
|
|
1735 |
{
|
1736 |
"case_id": "ioi_next_token",
|
1737 |
"url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi_next_token",
|
1738 |
+
"task_description": "Indirect Object Identification (IOI) task, trained using next token prediction.",
|
1739 |
"max_seq_len": 16,
|
1740 |
"min_seq_len": 16,
|
1741 |
"files": [
|
benchmark_metadata_croissant.json
CHANGED
@@ -257,156 +257,6 @@
|
|
257 |
}
|
258 |
}
|
259 |
},
|
260 |
-
{
|
261 |
-
"@type": "cr:Field",
|
262 |
-
"@id": "training_args.atol",
|
263 |
-
"name": "training_args.atol",
|
264 |
-
"description": "Column 'training_args.atol' from the parquet file describing all the cases in the benchmark.",
|
265 |
-
"dataType": "sc:Float",
|
266 |
-
"source": {
|
267 |
-
"fileSet": {
|
268 |
-
"@id": "benchmark-cases-parquet"
|
269 |
-
},
|
270 |
-
"extract": {
|
271 |
-
"column": "training_args.atol"
|
272 |
-
}
|
273 |
-
}
|
274 |
-
},
|
275 |
-
{
|
276 |
-
"@type": "cr:Field",
|
277 |
-
"@id": "training_args.lr",
|
278 |
-
"name": "training_args.lr",
|
279 |
-
"description": "Column 'training_args.lr' from the parquet file describing all the cases in the benchmark.",
|
280 |
-
"dataType": "sc:Float",
|
281 |
-
"source": {
|
282 |
-
"fileSet": {
|
283 |
-
"@id": "benchmark-cases-parquet"
|
284 |
-
},
|
285 |
-
"extract": {
|
286 |
-
"column": "training_args.lr"
|
287 |
-
}
|
288 |
-
}
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"@type": "cr:Field",
|
292 |
-
"@id": "training_args.use_single_loss",
|
293 |
-
"name": "training_args.use_single_loss",
|
294 |
-
"description": "Column 'training_args.use_single_loss' from the parquet file describing all the cases in the benchmark.",
|
295 |
-
"dataType": "sc:Boolean",
|
296 |
-
"source": {
|
297 |
-
"fileSet": {
|
298 |
-
"@id": "benchmark-cases-parquet"
|
299 |
-
},
|
300 |
-
"extract": {
|
301 |
-
"column": "training_args.use_single_loss"
|
302 |
-
}
|
303 |
-
}
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"@type": "cr:Field",
|
307 |
-
"@id": "training_args.iit_weight",
|
308 |
-
"name": "training_args.iit_weight",
|
309 |
-
"description": "Column 'training_args.iit_weight' from the parquet file describing all the cases in the benchmark.",
|
310 |
-
"dataType": "sc:Float",
|
311 |
-
"source": {
|
312 |
-
"fileSet": {
|
313 |
-
"@id": "benchmark-cases-parquet"
|
314 |
-
},
|
315 |
-
"extract": {
|
316 |
-
"column": "training_args.iit_weight"
|
317 |
-
}
|
318 |
-
}
|
319 |
-
},
|
320 |
-
{
|
321 |
-
"@type": "cr:Field",
|
322 |
-
"@id": "training_args.behavior_weight",
|
323 |
-
"name": "training_args.behavior_weight",
|
324 |
-
"description": "Column 'training_args.behavior_weight' from the parquet file describing all the cases in the benchmark.",
|
325 |
-
"dataType": "sc:Float",
|
326 |
-
"source": {
|
327 |
-
"fileSet": {
|
328 |
-
"@id": "benchmark-cases-parquet"
|
329 |
-
},
|
330 |
-
"extract": {
|
331 |
-
"column": "training_args.behavior_weight"
|
332 |
-
}
|
333 |
-
}
|
334 |
-
},
|
335 |
-
{
|
336 |
-
"@type": "cr:Field",
|
337 |
-
"@id": "training_args.strict_weight",
|
338 |
-
"name": "training_args.strict_weight",
|
339 |
-
"description": "Column 'training_args.strict_weight' from the parquet file describing all the cases in the benchmark.",
|
340 |
-
"dataType": "sc:Float",
|
341 |
-
"source": {
|
342 |
-
"fileSet": {
|
343 |
-
"@id": "benchmark-cases-parquet"
|
344 |
-
},
|
345 |
-
"extract": {
|
346 |
-
"column": "training_args.strict_weight"
|
347 |
-
}
|
348 |
-
}
|
349 |
-
},
|
350 |
-
{
|
351 |
-
"@type": "cr:Field",
|
352 |
-
"@id": "training_args.epochs",
|
353 |
-
"name": "training_args.epochs",
|
354 |
-
"description": "Column 'training_args.epochs' from the parquet file describing all the cases in the benchmark.",
|
355 |
-
"dataType": "sc:Float",
|
356 |
-
"source": {
|
357 |
-
"fileSet": {
|
358 |
-
"@id": "benchmark-cases-parquet"
|
359 |
-
},
|
360 |
-
"extract": {
|
361 |
-
"column": "training_args.epochs"
|
362 |
-
}
|
363 |
-
}
|
364 |
-
},
|
365 |
-
{
|
366 |
-
"@type": "cr:Field",
|
367 |
-
"@id": "training_args.act_fn",
|
368 |
-
"name": "training_args.act_fn",
|
369 |
-
"description": "Column 'training_args.act_fn' from the parquet file describing all the cases in the benchmark.",
|
370 |
-
"dataType": "sc:Text",
|
371 |
-
"source": {
|
372 |
-
"fileSet": {
|
373 |
-
"@id": "benchmark-cases-parquet"
|
374 |
-
},
|
375 |
-
"extract": {
|
376 |
-
"column": "training_args.act_fn"
|
377 |
-
}
|
378 |
-
}
|
379 |
-
},
|
380 |
-
{
|
381 |
-
"@type": "cr:Field",
|
382 |
-
"@id": "training_args.clip_grad_norm",
|
383 |
-
"name": "training_args.clip_grad_norm",
|
384 |
-
"description": "Column 'training_args.clip_grad_norm' from the parquet file describing all the cases in the benchmark.",
|
385 |
-
"dataType": "sc:Float",
|
386 |
-
"source": {
|
387 |
-
"fileSet": {
|
388 |
-
"@id": "benchmark-cases-parquet"
|
389 |
-
},
|
390 |
-
"extract": {
|
391 |
-
"column": "training_args.clip_grad_norm"
|
392 |
-
}
|
393 |
-
}
|
394 |
-
},
|
395 |
-
{
|
396 |
-
"@type": "cr:Field",
|
397 |
-
"@id": "training_args.lr_scheduler",
|
398 |
-
"name": "training_args.lr_scheduler",
|
399 |
-
"description": "Column 'training_args.lr_scheduler' from the parquet file describing all the cases in the benchmark.",
|
400 |
-
"dataType": "sc:Text",
|
401 |
-
"source": {
|
402 |
-
"fileSet": {
|
403 |
-
"@id": "benchmark-cases-parquet"
|
404 |
-
},
|
405 |
-
"extract": {
|
406 |
-
"column": "training_args.lr_scheduler"
|
407 |
-
}
|
408 |
-
}
|
409 |
-
},
|
410 |
{
|
411 |
"@type": "cr:Field",
|
412 |
"@id": "transformer_cfg.n_layers",
|
@@ -1037,6 +887,156 @@
|
|
1037 |
}
|
1038 |
}
|
1039 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1040 |
{
|
1041 |
"@type": "cr:Field",
|
1042 |
"@id": "training_args.model_pair",
|
@@ -1052,6 +1052,66 @@
|
|
1052 |
}
|
1053 |
}
|
1054 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1055 |
{
|
1056 |
"@type": "cr:Field",
|
1057 |
"@id": "training_args.next_token",
|
@@ -1069,46 +1129,46 @@
|
|
1069 |
},
|
1070 |
{
|
1071 |
"@type": "cr:Field",
|
1072 |
-
"@id": "training_args.
|
1073 |
-
"name": "training_args.
|
1074 |
-
"description": "Column 'training_args.
|
1075 |
-
"dataType": "sc:
|
1076 |
"source": {
|
1077 |
"fileSet": {
|
1078 |
"@id": "benchmark-cases-parquet"
|
1079 |
},
|
1080 |
"extract": {
|
1081 |
-
"column": "training_args.
|
1082 |
}
|
1083 |
}
|
1084 |
},
|
1085 |
{
|
1086 |
"@type": "cr:Field",
|
1087 |
-
"@id": "training_args.
|
1088 |
-
"name": "training_args.
|
1089 |
-
"description": "Column 'training_args.
|
1090 |
-
"dataType": "sc:
|
1091 |
"source": {
|
1092 |
"fileSet": {
|
1093 |
"@id": "benchmark-cases-parquet"
|
1094 |
},
|
1095 |
"extract": {
|
1096 |
-
"column": "training_args.
|
1097 |
}
|
1098 |
}
|
1099 |
},
|
1100 |
{
|
1101 |
"@type": "cr:Field",
|
1102 |
-
"@id": "training_args.
|
1103 |
-
"name": "training_args.
|
1104 |
-
"description": "Column 'training_args.
|
1105 |
-
"dataType": "sc:
|
1106 |
"source": {
|
1107 |
"fileSet": {
|
1108 |
"@id": "benchmark-cases-parquet"
|
1109 |
},
|
1110 |
"extract": {
|
1111 |
-
"column": "training_args.
|
1112 |
}
|
1113 |
}
|
1114 |
},
|
@@ -1171,6 +1231,66 @@
|
|
1171 |
"column": "training_args.scheduler_mode"
|
1172 |
}
|
1173 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1174 |
}
|
1175 |
]
|
1176 |
}
|
|
|
257 |
}
|
258 |
}
|
259 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
{
|
261 |
"@type": "cr:Field",
|
262 |
"@id": "transformer_cfg.n_layers",
|
|
|
887 |
}
|
888 |
}
|
889 |
},
|
890 |
+
{
|
891 |
+
"@type": "cr:Field",
|
892 |
+
"@id": "training_args.atol",
|
893 |
+
"name": "training_args.atol",
|
894 |
+
"description": "Column 'training_args.atol' from the parquet file describing all the cases in the benchmark.",
|
895 |
+
"dataType": "sc:Float",
|
896 |
+
"source": {
|
897 |
+
"fileSet": {
|
898 |
+
"@id": "benchmark-cases-parquet"
|
899 |
+
},
|
900 |
+
"extract": {
|
901 |
+
"column": "training_args.atol"
|
902 |
+
}
|
903 |
+
}
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"@type": "cr:Field",
|
907 |
+
"@id": "training_args.lr",
|
908 |
+
"name": "training_args.lr",
|
909 |
+
"description": "Column 'training_args.lr' from the parquet file describing all the cases in the benchmark.",
|
910 |
+
"dataType": "sc:Float",
|
911 |
+
"source": {
|
912 |
+
"fileSet": {
|
913 |
+
"@id": "benchmark-cases-parquet"
|
914 |
+
},
|
915 |
+
"extract": {
|
916 |
+
"column": "training_args.lr"
|
917 |
+
}
|
918 |
+
}
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"@type": "cr:Field",
|
922 |
+
"@id": "training_args.use_single_loss",
|
923 |
+
"name": "training_args.use_single_loss",
|
924 |
+
"description": "Column 'training_args.use_single_loss' from the parquet file describing all the cases in the benchmark.",
|
925 |
+
"dataType": "sc:Boolean",
|
926 |
+
"source": {
|
927 |
+
"fileSet": {
|
928 |
+
"@id": "benchmark-cases-parquet"
|
929 |
+
},
|
930 |
+
"extract": {
|
931 |
+
"column": "training_args.use_single_loss"
|
932 |
+
}
|
933 |
+
}
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"@type": "cr:Field",
|
937 |
+
"@id": "training_args.iit_weight",
|
938 |
+
"name": "training_args.iit_weight",
|
939 |
+
"description": "Column 'training_args.iit_weight' from the parquet file describing all the cases in the benchmark.",
|
940 |
+
"dataType": "sc:Float",
|
941 |
+
"source": {
|
942 |
+
"fileSet": {
|
943 |
+
"@id": "benchmark-cases-parquet"
|
944 |
+
},
|
945 |
+
"extract": {
|
946 |
+
"column": "training_args.iit_weight"
|
947 |
+
}
|
948 |
+
}
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"@type": "cr:Field",
|
952 |
+
"@id": "training_args.behavior_weight",
|
953 |
+
"name": "training_args.behavior_weight",
|
954 |
+
"description": "Column 'training_args.behavior_weight' from the parquet file describing all the cases in the benchmark.",
|
955 |
+
"dataType": "sc:Float",
|
956 |
+
"source": {
|
957 |
+
"fileSet": {
|
958 |
+
"@id": "benchmark-cases-parquet"
|
959 |
+
},
|
960 |
+
"extract": {
|
961 |
+
"column": "training_args.behavior_weight"
|
962 |
+
}
|
963 |
+
}
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"@type": "cr:Field",
|
967 |
+
"@id": "training_args.strict_weight",
|
968 |
+
"name": "training_args.strict_weight",
|
969 |
+
"description": "Column 'training_args.strict_weight' from the parquet file describing all the cases in the benchmark.",
|
970 |
+
"dataType": "sc:Float",
|
971 |
+
"source": {
|
972 |
+
"fileSet": {
|
973 |
+
"@id": "benchmark-cases-parquet"
|
974 |
+
},
|
975 |
+
"extract": {
|
976 |
+
"column": "training_args.strict_weight"
|
977 |
+
}
|
978 |
+
}
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"@type": "cr:Field",
|
982 |
+
"@id": "training_args.epochs",
|
983 |
+
"name": "training_args.epochs",
|
984 |
+
"description": "Column 'training_args.epochs' from the parquet file describing all the cases in the benchmark.",
|
985 |
+
"dataType": "sc:Float",
|
986 |
+
"source": {
|
987 |
+
"fileSet": {
|
988 |
+
"@id": "benchmark-cases-parquet"
|
989 |
+
},
|
990 |
+
"extract": {
|
991 |
+
"column": "training_args.epochs"
|
992 |
+
}
|
993 |
+
}
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"@type": "cr:Field",
|
997 |
+
"@id": "training_args.act_fn",
|
998 |
+
"name": "training_args.act_fn",
|
999 |
+
"description": "Column 'training_args.act_fn' from the parquet file describing all the cases in the benchmark.",
|
1000 |
+
"dataType": "sc:Text",
|
1001 |
+
"source": {
|
1002 |
+
"fileSet": {
|
1003 |
+
"@id": "benchmark-cases-parquet"
|
1004 |
+
},
|
1005 |
+
"extract": {
|
1006 |
+
"column": "training_args.act_fn"
|
1007 |
+
}
|
1008 |
+
}
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"@type": "cr:Field",
|
1012 |
+
"@id": "training_args.clip_grad_norm",
|
1013 |
+
"name": "training_args.clip_grad_norm",
|
1014 |
+
"description": "Column 'training_args.clip_grad_norm' from the parquet file describing all the cases in the benchmark.",
|
1015 |
+
"dataType": "sc:Float",
|
1016 |
+
"source": {
|
1017 |
+
"fileSet": {
|
1018 |
+
"@id": "benchmark-cases-parquet"
|
1019 |
+
},
|
1020 |
+
"extract": {
|
1021 |
+
"column": "training_args.clip_grad_norm"
|
1022 |
+
}
|
1023 |
+
}
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"@type": "cr:Field",
|
1027 |
+
"@id": "training_args.lr_scheduler",
|
1028 |
+
"name": "training_args.lr_scheduler",
|
1029 |
+
"description": "Column 'training_args.lr_scheduler' from the parquet file describing all the cases in the benchmark.",
|
1030 |
+
"dataType": "sc:Text",
|
1031 |
+
"source": {
|
1032 |
+
"fileSet": {
|
1033 |
+
"@id": "benchmark-cases-parquet"
|
1034 |
+
},
|
1035 |
+
"extract": {
|
1036 |
+
"column": "training_args.lr_scheduler"
|
1037 |
+
}
|
1038 |
+
}
|
1039 |
+
},
|
1040 |
{
|
1041 |
"@type": "cr:Field",
|
1042 |
"@id": "training_args.model_pair",
|
|
|
1052 |
}
|
1053 |
}
|
1054 |
},
|
1055 |
+
{
|
1056 |
+
"@type": "cr:Field",
|
1057 |
+
"@id": "training_args.same_size",
|
1058 |
+
"name": "training_args.same_size",
|
1059 |
+
"description": "Column 'training_args.same_size' from the parquet file describing all the cases in the benchmark.",
|
1060 |
+
"dataType": "sc:Boolean",
|
1061 |
+
"source": {
|
1062 |
+
"fileSet": {
|
1063 |
+
"@id": "benchmark-cases-parquet"
|
1064 |
+
},
|
1065 |
+
"extract": {
|
1066 |
+
"column": "training_args.same_size"
|
1067 |
+
}
|
1068 |
+
}
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"@type": "cr:Field",
|
1072 |
+
"@id": "training_args.seed",
|
1073 |
+
"name": "training_args.seed",
|
1074 |
+
"description": "Column 'training_args.seed' from the parquet file describing all the cases in the benchmark.",
|
1075 |
+
"dataType": "sc:Float",
|
1076 |
+
"source": {
|
1077 |
+
"fileSet": {
|
1078 |
+
"@id": "benchmark-cases-parquet"
|
1079 |
+
},
|
1080 |
+
"extract": {
|
1081 |
+
"column": "training_args.seed"
|
1082 |
+
}
|
1083 |
+
}
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"@type": "cr:Field",
|
1087 |
+
"@id": "training_args.batch_size",
|
1088 |
+
"name": "training_args.batch_size",
|
1089 |
+
"description": "Column 'training_args.batch_size' from the parquet file describing all the cases in the benchmark.",
|
1090 |
+
"dataType": "sc:Float",
|
1091 |
+
"source": {
|
1092 |
+
"fileSet": {
|
1093 |
+
"@id": "benchmark-cases-parquet"
|
1094 |
+
},
|
1095 |
+
"extract": {
|
1096 |
+
"column": "training_args.batch_size"
|
1097 |
+
}
|
1098 |
+
}
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"@type": "cr:Field",
|
1102 |
+
"@id": "training_args.include_mlp",
|
1103 |
+
"name": "training_args.include_mlp",
|
1104 |
+
"description": "Column 'training_args.include_mlp' from the parquet file describing all the cases in the benchmark.",
|
1105 |
+
"dataType": "sc:Boolean",
|
1106 |
+
"source": {
|
1107 |
+
"fileSet": {
|
1108 |
+
"@id": "benchmark-cases-parquet"
|
1109 |
+
},
|
1110 |
+
"extract": {
|
1111 |
+
"column": "training_args.include_mlp"
|
1112 |
+
}
|
1113 |
+
}
|
1114 |
+
},
|
1115 |
{
|
1116 |
"@type": "cr:Field",
|
1117 |
"@id": "training_args.next_token",
|
|
|
1129 |
},
|
1130 |
{
|
1131 |
"@type": "cr:Field",
|
1132 |
+
"@id": "training_args.detach_while_caching",
|
1133 |
+
"name": "training_args.detach_while_caching",
|
1134 |
+
"description": "Column 'training_args.detach_while_caching' from the parquet file describing all the cases in the benchmark.",
|
1135 |
+
"dataType": "sc:Boolean",
|
1136 |
"source": {
|
1137 |
"fileSet": {
|
1138 |
"@id": "benchmark-cases-parquet"
|
1139 |
},
|
1140 |
"extract": {
|
1141 |
+
"column": "training_args.detach_while_caching"
|
1142 |
}
|
1143 |
}
|
1144 |
},
|
1145 |
{
|
1146 |
"@type": "cr:Field",
|
1147 |
+
"@id": "training_args.non_ioi_thresh",
|
1148 |
+
"name": "training_args.non_ioi_thresh",
|
1149 |
+
"description": "Column 'training_args.non_ioi_thresh' from the parquet file describing all the cases in the benchmark.",
|
1150 |
+
"dataType": "sc:Float",
|
1151 |
"source": {
|
1152 |
"fileSet": {
|
1153 |
"@id": "benchmark-cases-parquet"
|
1154 |
},
|
1155 |
"extract": {
|
1156 |
+
"column": "training_args.non_ioi_thresh"
|
1157 |
}
|
1158 |
}
|
1159 |
},
|
1160 |
{
|
1161 |
"@type": "cr:Field",
|
1162 |
+
"@id": "training_args.use_per_token_check",
|
1163 |
+
"name": "training_args.use_per_token_check",
|
1164 |
+
"description": "Column 'training_args.use_per_token_check' from the parquet file describing all the cases in the benchmark.",
|
1165 |
+
"dataType": "sc:Boolean",
|
1166 |
"source": {
|
1167 |
"fileSet": {
|
1168 |
"@id": "benchmark-cases-parquet"
|
1169 |
},
|
1170 |
"extract": {
|
1171 |
+
"column": "training_args.use_per_token_check"
|
1172 |
}
|
1173 |
}
|
1174 |
},
|
|
|
1231 |
"column": "training_args.scheduler_mode"
|
1232 |
}
|
1233 |
}
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"@type": "cr:Field",
|
1237 |
+
"@id": "training_args.val_IIA_sampling",
|
1238 |
+
"name": "training_args.val_IIA_sampling",
|
1239 |
+
"description": "Column 'training_args.val_IIA_sampling' from the parquet file describing all the cases in the benchmark.",
|
1240 |
+
"dataType": "sc:Text",
|
1241 |
+
"source": {
|
1242 |
+
"fileSet": {
|
1243 |
+
"@id": "benchmark-cases-parquet"
|
1244 |
+
},
|
1245 |
+
"extract": {
|
1246 |
+
"column": "training_args.val_IIA_sampling"
|
1247 |
+
}
|
1248 |
+
}
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"@type": "cr:Field",
|
1252 |
+
"@id": "training_args.use_all_tokens_for_behavior",
|
1253 |
+
"name": "training_args.use_all_tokens_for_behavior",
|
1254 |
+
"description": "Column 'training_args.use_all_tokens_for_behavior' from the parquet file describing all the cases in the benchmark.",
|
1255 |
+
"dataType": "sc:Boolean",
|
1256 |
+
"source": {
|
1257 |
+
"fileSet": {
|
1258 |
+
"@id": "benchmark-cases-parquet"
|
1259 |
+
},
|
1260 |
+
"extract": {
|
1261 |
+
"column": "training_args.use_all_tokens_for_behavior"
|
1262 |
+
}
|
1263 |
+
}
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"@type": "cr:Field",
|
1267 |
+
"@id": "training_args.siit_sampling",
|
1268 |
+
"name": "training_args.siit_sampling",
|
1269 |
+
"description": "Column 'training_args.siit_sampling' from the parquet file describing all the cases in the benchmark.",
|
1270 |
+
"dataType": "sc:Text",
|
1271 |
+
"source": {
|
1272 |
+
"fileSet": {
|
1273 |
+
"@id": "benchmark-cases-parquet"
|
1274 |
+
},
|
1275 |
+
"extract": {
|
1276 |
+
"column": "training_args.siit_sampling"
|
1277 |
+
}
|
1278 |
+
}
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"@type": "cr:Field",
|
1282 |
+
"@id": "training_args.optimizer_kwargs.betas",
|
1283 |
+
"name": "training_args.optimizer_kwargs.betas",
|
1284 |
+
"description": "Column 'training_args.optimizer_kwargs.betas' from the parquet file describing all the cases in the benchmark.",
|
1285 |
+
"dataType": "sc:Text",
|
1286 |
+
"source": {
|
1287 |
+
"fileSet": {
|
1288 |
+
"@id": "benchmark-cases-parquet"
|
1289 |
+
},
|
1290 |
+
"extract": {
|
1291 |
+
"column": "training_args.optimizer_kwargs.betas"
|
1292 |
+
}
|
1293 |
+
}
|
1294 |
}
|
1295 |
]
|
1296 |
}
|