cybersectony
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -7,4 +7,98 @@ language:
|
|
7 |
base_model:
|
8 |
- distilbert/distilbert-base-uncased
|
9 |
library_name: transformers
|
10 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
base_model:
|
8 |
- distilbert/distilbert-base-uncased
|
9 |
library_name: transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# A distilBERT based Phishing Email Detection Model
|
13 |
+
|
14 |
+
## Model Overview
|
15 |
+
This model is based on DistilBERT and has been fine-tuned for multilabel classification of Emails and URLs as safe or potentially phishing.
|
16 |
+
|
17 |
+
## Key Specifications
|
18 |
+
- __Base Architecture:__ DistilBERT
|
19 |
+
- __Task:__ Multilabel Classification
|
20 |
+
- __Fine-tuning Framework:__ Hugging Face Trainer API
|
21 |
+
- __Training Duration:__ 3 epochs
|
22 |
+
|
23 |
+
## Performance Metrics
|
24 |
+
- __F1-score:__ 97.717
|
25 |
+
- __Accuracy:__ 97.716
|
26 |
+
- __Precision:__ 97.736
|
27 |
+
- __Recall:__ 97.717
|
28 |
+
|
29 |
+
## Dataset Details
|
30 |
+
|
31 |
+
The model was trained on a custom dataset of Emails and URLs labeled as legitimate or phishing. The dataset is available at [`cybersectony/PhishingEmailDetectionv2.0`](https://huggingface.co/datasets/cybersectony/PhishingEmailDetectionv2.0) on the Hugging Face Hub.
|
32 |
+
|
33 |
+
|
34 |
+
## Usage Guide
|
35 |
+
|
36 |
+
## Installation
|
37 |
+
|
38 |
+
```bash
|
39 |
+
pip install transformers
|
40 |
+
pip install torch
|
41 |
+
```
|
42 |
+
|
43 |
+
## Quick Start
|
44 |
+
|
45 |
+
```python
|
46 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("your-username/model-name")
|
48 |
+
import torch
|
49 |
+
|
50 |
+
# Load model and tokenizer
|
51 |
+
model = AutoModelForSequenceClassification.from_pretrained("your-username/model-name")
|
52 |
+
|
53 |
+
def predict_email(email_text):
|
54 |
+
# Preprocess and tokenize
|
55 |
+
inputs = tokenizer(
|
56 |
+
email_text,
|
57 |
+
return_tensors="pt",
|
58 |
+
truncation=True,
|
59 |
+
max_length=512
|
60 |
+
)
|
61 |
+
|
62 |
+
# Get prediction
|
63 |
+
with torch.no_grad():
|
64 |
+
outputs = model(**inputs)
|
65 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
66 |
+
|
67 |
+
# Get probabilities for each class
|
68 |
+
probs = predictions[0].tolist()
|
69 |
+
|
70 |
+
# Create labels dictionary
|
71 |
+
labels = {
|
72 |
+
"legitimate_email": probs[0],
|
73 |
+
"phishing_url": probs[1],
|
74 |
+
"legitimate_url": probs[2],
|
75 |
+
"phishing_url_alt": probs[3]
|
76 |
+
}
|
77 |
+
|
78 |
+
# Determine the most likely classification
|
79 |
+
max_label = max(labels.items(), key=lambda x: x[1])
|
80 |
+
|
81 |
+
return {
|
82 |
+
"prediction": max_label[0],
|
83 |
+
"confidence": max_label[1],
|
84 |
+
"all_probabilities": labels
|
85 |
+
}
|
86 |
+
```
|
87 |
+
|
88 |
+
## Example Usage
|
89 |
+
|
90 |
+
```python
|
91 |
+
# Example usage
|
92 |
+
email = """
|
93 |
+
Dear User,
|
94 |
+
Your account security needs immediate attention. Please verify your credentials.
|
95 |
+
Click here: http://suspicious-link.com
|
96 |
+
"""
|
97 |
+
|
98 |
+
result = predict_email(email)
|
99 |
+
print(f"Prediction: {result['prediction']}")
|
100 |
+
print(f"Confidence: {result['confidence']:.2%}")
|
101 |
+
print("\nAll probabilities:")
|
102 |
+
for label, prob in result['all_probabilities'].items():
|
103 |
+
print(f"{label}: {prob:.2%}")
|
104 |
+
```
|