culteejen commited on
Commit
3c6dfce
·
1 Parent(s): e5572ad

Upload model to Hugging Face

Browse files
BC-harcodemap-punish-stagnant-long.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f4788b778c071be5329a01179ccec2104f38174730d1b7b31dbcea98abd8936d
3
- size 44018
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba9b4c891791b1ea50ddb14a8ec02bb95ba451005314d0f26500a356f2395e26
3
+ size 44074
BC-harcodemap-punish-stagnant-long/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4eb18ed1b0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4eb18ed240>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4eb18ed2d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4eb18ed360>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f4eb18ed3f0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f4eb18ed480>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4eb18ed510>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4eb18ed5a0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f4eb18ed630>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4eb18ed6c0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4eb18ed750>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4eb18ed7e0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f4eb18de400>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
@@ -48,7 +48,7 @@
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1681935196268149594,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAPwI70J0zJu/Z8UlQpeaGUKLaFVCAADIQgAAyEIAAMhCAADIQgAAyEIS8QdDQ9q6v5tnskFtL51BFdDPQQAAyEIAAMhCAADIQgAAyEIAAMhC5UUwQ98z578AAMhCVU26Qt21s0IAAMhCAADIQpUhokIAAMhCAADIQsjLaUNL2yS/AADIQgAAyEJT/iNC32A2QlARkkIAAMhCAADIQoacX0KUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -70,7 +70,7 @@
70
  "_current_progress_remaining": -0.02400000000000002,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2T7kLSfBlMCUhpRSlIwBbJRLDYwBdJRHQIrjKQzUI9l1fZQoaAZoCWgPQwi63GCoo9CHwJSGlFKUaBVLVWgWR0CK5ZNrTH81dX2UKGgGaAloD0MIdy6M9CKqhMCUhpRSlGgVSyRoFkdAiuaKF7D2rXV9lChoBmgJaA9DCB+CqtFLuZTAlIaUUpRoFUtjaBZHQIrm59PUKAt1fZQoaAZoCWgPQwj7QPLOMbCUwJSGlFKUaBVLE2gWR0CK56CA+Y+jdX2UKGgGaAloD0MIOQt72oFah8CUhpRSlGgVSzRoFkdAiulAwXZXdXV9lChoBmgJaA9DCKvLKQGBApbAlIaUUpRoFUsfaBZHQIrqRpWV/tp1fZQoaAZoCWgPQwjL1Y9NMo2HwJSGlFKUaBVLNmgWR0CK7bq8DjiodX2UKGgGaAloD0MI46YGmq8DhcCUhpRSlGgVS0hoFkdAivKgG8mKInV9lChoBmgJaA9DCIwtBDnYz5TAlIaUUpRoFUsPaBZHQIr0fx4IKMN1fZQoaAZoCWgPQwiLNVzkTrGawJSGlFKUaBVLd2gWR0CK9rp/PPcBdX2UKGgGaAloD0MIQS0GD9ONlMCUhpRSlGgVSxdoFkdAivdUpd8iOnV9lChoBmgJaA9DCMu+K4J/g5bAlIaUUpRoFUuAaBZHQIr6fEuQIUt1fZQoaAZoCWgPQwioiqn001SZwJSGlFKUaBVLf2gWR0CK/bB0p3HJdX2UKGgGaAloD0MICDnv/+NBlcCUhpRSlGgVSxRoFkdAiwAllsguAnV9lChoBmgJaA9DCGRbBpxFUpnAlIaUUpRoFUtOaBZHQIsA/YcvM8p1fZQoaAZoCWgPQwhtqu6RrTaHwJSGlFKUaBVLPGgWR0CLAaFV1fVqdX2UKGgGaAloD0MI0SLb+b7elcCUhpRSlGgVSxVoFkdAiwODJEH+qHV9lChoBmgJaA9DCPjii/b4lZTAlIaUUpRoFUsVaBZHQIsFRY3eenR1fZQoaAZoCWgPQwic+GpH8ZSUwJSGlFKUaBVLiWgWR0CLBZ15jYqYdX2UKGgGaAloD0MICCKLNBEwksCUhpRSlGgVS3ZoFkdAiwuFDfFaS3V9lChoBmgJaA9DCDVDqiheNo7AlIaUUpRoFUtMaBZHQIsMQXuVopR1fZQoaAZoCWgPQwg7Oq5GlueUwJSGlFKUaBVLjGgWR0CLDOuLaVUudX2UKGgGaAloD0MIgSBAhp4IlsCUhpRSlGgVSxRoFkdAiw3P9UCJXXV9lChoBmgJaA9DCMfVyK4U+JvAlIaUUpRoFUuQaBZHQIsSxggHNX51fZQoaAZoCWgPQwhIisiwOtmSwJSGlFKUaBVLYGgWR0CLE+3Q2MsIdX2UKGgGaAloD0MIibfOv33licCUhpRSlGgVS0poFkdAixQ2dNFjNXV9lChoBmgJaA9DCOhsAaH105XAlIaUUpRoFUsaaBZHQIsUsLQXyiF1fZQoaAZoCWgPQwgf9GxWPRiWwJSGlFKUaBVLJ2gWR0CLFvx7zCk5dX2UKGgGaAloD0MIWTUIcyuEm8CUhpRSlGgVS4toFkdAixhv4ubqhXV9lChoBmgJaA9DCLgGtkpQq4zAlIaUUpRoFUtMaBZHQIsaDF6zE751fZQoaAZoCWgPQwgROBJoEPmZwJSGlFKUaBVLTGgWR0CLHuMLncL0dX2UKGgGaAloD0MI/BnerJF1mcCUhpRSlGgVS3FoFkdAiyC1zp5eJHV9lChoBmgJaA9DCOq0boPaVpzAlIaUUpRoFUufaBZHQIsiD4DcM3J1fZQoaAZoCWgPQwgZ5C7C5LCUwJSGlFKUaBVLGmgWR0CLIq4YrJ8wdX2UKGgGaAloD0MIEOZ2L9dSh8CUhpRSlGgVSzJoFkdAiyMX7Lt/nXV9lChoBmgJaA9DCEdxjjra/pTAlIaUUpRoFUsTaBZHQIsjZJul41R1fZQoaAZoCWgPQwhxrmGGhteawJSGlFKUaBVLdWgWR0CLJAGvfTCtdX2UKGgGaAloD0MIyeTUzvCvlMCUhpRSlGgVSx5oFkdAiySlMZgogHV9lChoBmgJaA9DCDy/KEHfbpXAlIaUUpRoFUsUaBZHQIskqIUJv5x1fZQoaAZoCWgPQwgPJzCdVv2UwJSGlFKUaBVLGmgWR0CLJMvmHP/rdX2UKGgGaAloD0MIn7DEA9oklcCUhpRSlGgVSyFoFkdAiyfShBZ6lnV9lChoBmgJaA9DCP5EZcOaRovAlIaUUpRoFUtQaBZHQIssGNzbN8p1fZQoaAZoCWgPQwiNDHIXMROcwJSGlFKUaBVLh2gWR0CLMEM+/xlQdX2UKGgGaAloD0MI14hgHOzuksCUhpRSlGgVS4RoFkdAizEKFAVwgnV9lChoBmgJaA9DCEcf8wGhHpvAlIaUUpRoFUtiaBZHQIsxITqSowV1fZQoaAZoCWgPQwhmiGNdHHaVwJSGlFKUaBVLEmgWR0CLMqGs3hn8dX2UKGgGaAloD0MIo4/5gEBOmcCUhpRSlGgVS2NoFkdAizVHOKO1fHV9lChoBmgJaA9DCO9zfLSoxpXAlIaUUpRoFUsPaBZHQIs2k4WDYiB1fZQoaAZoCWgPQwhDxqNU4lGOwJSGlFKUaBVLSGgWR0CLN4RxtHhCdX2UKGgGaAloD0MIj/zBwKOrlMCUhpRSlGgVS3hoFkdAizsLNwBHTnV9lChoBmgJaA9DCC++aI93E4bAlIaUUpRoFUs4aBZHQIs7dhkRSP51fZQoaAZoCWgPQwhtWb4u80uVwJSGlFKUaBVLE2gWR0CLPJ00WM0hdX2UKGgGaAloD0MIByeiXysflcCUhpRSlGgVSxhoFkdAiz2cgIQe3nV9lChoBmgJaA9DCCycpPmDiJTAlIaUUpRoFUsRaBZHQIs+MeGO+7F1fZQoaAZoCWgPQwhHcvkPSWWawJSGlFKUaBVLaGgWR0CLQO9cry2AdX2UKGgGaAloD0MIKxIT1GDEm8CUhpRSlGgVS6FoFkdAi0FFz2exwHV9lChoBmgJaA9DCILHt3cdGpXAlIaUUpRoFUsTaBZHQItC4rMC9yt1fZQoaAZoCWgPQwicNuM01C6bwJSGlFKUaBVLc2gWR0CLSWfwI+nqdX2UKGgGaAloD0MImfT3Urg+m8CUhpRSlGgVS31oFkdAi0rrZBcAznV9lChoBmgJaA9DCKX3ja/d7ZTAlIaUUpRoFUsQaBZHQItMH863iJh1fZQoaAZoCWgPQwhMw/AR8QmGwJSGlFKUaBVLMWgWR0CLTUh9srNGdX2UKGgGaAloD0MI8l61MgGUlcCUhpRSlGgVS4ZoFkdAi04pBgNPQHV9lChoBmgJaA9DCEkRGVYBYJbAlIaUUpRoFUuGaBZHQItPc3S8an91fZQoaAZoCWgPQwiPcFrwUjaVwJSGlFKUaBVLEWgWR0CLT6kBS1mbdX2UKGgGaAloD0MIi/z6IZaphcCUhpRSlGgVS0NoFkdAi1H4y44IbHV9lChoBmgJaA9DCKLQsu5f6JTAlIaUUpRoFUsSaBZHQItTqEBbOeJ1fZQoaAZoCWgPQwi6awn54FGawJSGlFKUaBVLV2gWR0CLVX9Ujs2OdX2UKGgGaAloD0MIn+bkRSbchcCUhpRSlGgVS0toFkdAi1asU7CBPXV9lChoBmgJaA9DCFMDzefcRI7AlIaUUpRoFUtQaBZHQIta5sXSBsh1fZQoaAZoCWgPQwg8vr1rUCOHwJSGlFKUaBVLO2gWR0CLW5GjsUqQdX2UKGgGaAloD0MIZYnOMqulm8CUhpRSlGgVS5ZoFkdAi12BAOavzXV9lChoBmgJaA9DCLe1hedVXZvAlIaUUpRoFUt7aBZHQItg2GATZg51fZQoaAZoCWgPQwg5tMh2vnWOwJSGlFKUaBVLYmgWR0CLZebVjI7vdX2UKGgGaAloD0MIq1yo/MuXi8CUhpRSlGgVS1poFkdAi2b35N47inV9lChoBmgJaA9DCKKyYU1lO5bAlIaUUpRoFUuaaBZHQItrBD/lyR11fZQoaAZoCWgPQwhZF7fRgBqGwJSGlFKUaBVLM2gWR0CLa0gSvkimdX2UKGgGaAloD0MIkJ4ih7gClcCUhpRSlGgVSxJoFkdAi20iIDYAbXV9lChoBmgJaA9DCOqRBrf1QonAlIaUUpRoFUtJaBZHQItuZOi35N51fZQoaAZoCWgPQwhQNuUKzwOVwJSGlFKUaBVLFGgWR0CLbxaM72csdX2UKGgGaAloD0MIjPUNTL5blsCUhpRSlGgVSyloFkdAi28cR15jY3V9lChoBmgJaA9DCDRKl/5Vn5vAlIaUUpRoFUufaBZHQItxWpuMuOF1fZQoaAZoCWgPQwixU6waJIyHwJSGlFKUaBVLPGgWR0CLdPXL/0dzdX2UKGgGaAloD0MIn1p9dQValcCUhpRSlGgVSxpoFkdAi3fEHlfZ3HV9lChoBmgJaA9DCNLHfEBQCJvAlIaUUpRoFUtZaBZHQIt3/+GXXy11fZQoaAZoCWgPQwg3p5IBgLaJwJSGlFKUaBVLY2gWR0CLeGwHJLdvdX2UKGgGaAloD0MIBmUaTc4ii8CUhpRSlGgVS0doFkdAi3iPZ7HAAXV9lChoBmgJaA9DCF9cqtIG+pTAlIaUUpRoFUsRaBZHQIt5hT850bN1fZQoaAZoCWgPQwi9p3LaA/eUwJSGlFKUaBVLHGgWR0CLeZFspG4JdX2UKGgGaAloD0MIo1wav/DHlMCUhpRSlGgVSxBoFkdAi3pyfUWl/HV9lChoBmgJaA9DCNNNYhBYspTAlIaUUpRoFUsWaBZHQIt7o71ZkkN1fZQoaAZoCWgPQwhI4XoULmKIwJSGlFKUaBVLPmgWR0CLe9sTFl06dX2UKGgGaAloD0MILxaGyKkWlcCUhpRSlGgVSw9oFkdAi3zMGorFwXV9lChoBmgJaA9DCCv7rgj++ZTAlIaUUpRoFUsTaBZHQIt9oEU0vXd1fZQoaAZoCWgPQwgvGFxzFwuawJSGlFKUaBVLWmgWR0CLflZvkzXSdX2UKGgGaAloD0MIWhE10YeBhcCUhpRSlGgVSzZoFkdAi4Jh3qzJIXV9lChoBmgJaA9DCOUOm8hsyYfAlIaUUpRoFUs7aBZHQIuDQwqRU3p1fZQoaAZoCWgPQwjMfXIU0IiUwJSGlFKUaBVLC2gWR0CLg1fOUt7KdX2UKGgGaAloD0MIsTGvI26nm8CUhpRSlGgVS4doFkdAi4RiVSn+AHV9lChoBmgJaA9DCDYf14Zaw5bAlIaUUpRoFUtqaBZHQIuG6rLhaTx1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7d84ed1b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7d84ed240>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7d84ed2d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7d84ed360>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe7d84ed3f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe7d84ed480>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7d84ed510>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7d84ed5a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe7d84ed630>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7d84ed6c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7d84ed750>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7d84ed7e0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fe7d84e1e00>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
 
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1681936564972229464,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAC6+b0MuOu6/hRDhQeqnZUErrWlB8i3mQRi3skIAAMhCAADIQgAAyEJadExDzSoWvwAAyEIAAMhC1fZ5QcI8kUHJwE5CAADIQgAAyELM+ENC43skQxL4PsBelQJC06OYQgAAyEIAAMhC1q+xQgAAyEIAAMhCAADIQs2dPUMVtjlAN7LFQoZw9UG2fcJBAADIQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
70
  "_current_progress_remaining": -0.02400000000000002,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImUnUC57EgcCUhpRSlIwBbJRNLQGMAXSUR0CG4T00WM0hdX2UKGgGaAloD0MItOTxtMxdoMCUhpRSlGgVSzFoFkdAhuSqzRhMJ3V9lChoBmgJaA9DCD19BP6osqHAlIaUUpRoFUs0aBZHQIbmmr2g3991fZQoaAZoCWgPQwhi+IiYYrqcwJSGlFKUaBVNLQFoFkdAhun3mNipenV9lChoBmgJaA9DCFjKMsRxGKHAlIaUUpRoFUtEaBZHQIbqdke6qbV1fZQoaAZoCWgPQwi2Z5YEAL+hwJSGlFKUaBVLcWgWR0CG9B1FH8TBdX2UKGgGaAloD0MIqWvtfdpgl8CUhpRSlGgVTS0BaBZHQIb4Um0E5hl1fZQoaAZoCWgPQwguVP61jMmgwJSGlFKUaBVLXGgWR0CG+sg+QlrudX2UKGgGaAloD0MIfc9IhEbbosCUhpRSlGgVTS0BaBZHQIb+EnLJSzh1fZQoaAZoCWgPQwgbLJyk+WqfwJSGlFKUaBVLcGgWR0CG/3t78ejmdX2UKGgGaAloD0MILCgMylTBocCUhpRSlGgVTS0BaBZHQIcBFn27FsJ1fZQoaAZoCWgPQwjn+6nxsoqjwJSGlFKUaBVLSGgWR0CHBWn5SFXadX2UKGgGaAloD0MI1GGFW77YoMCUhpRSlGgVS49oFkdAhwdU163RX3V9lChoBmgJaA9DCJMANbV0z6XAlIaUUpRoFUvBaBZHQIcKv7cfvF51fZQoaAZoCWgPQwjNVl7ytz+iwJSGlFKUaBVLX2gWR0CHDNiJfpljdX2UKGgGaAloD0MIqKePwF+CkcCUhpRSlGgVTS0BaBZHQIcNv9cbBGh1fZQoaAZoCWgPQwgmx53S4VuiwJSGlFKUaBVLbmgWR0CHFy4J/oaDdX2UKGgGaAloD0MI7/54r9roosCUhpRSlGgVTS0BaBZHQIceeNBF/hF1fZQoaAZoCWgPQwjU8C2sW5uhwJSGlFKUaBVL4GgWR0CHIw3YL9dedX2UKGgGaAloD0MIOE4K8zYCocCUhpRSlGgVTREBaBZHQIckUNQTEit1fZQoaAZoCWgPQwifHXBd4SOgwJSGlFKUaBVLj2gWR0CHJSamXPZ7dX2UKGgGaAloD0MIm1Q01tbWosCUhpRSlGgVS0VoFkdAhyuhl+Vkc3V9lChoBmgJaA9DCN3temmy6qDAlIaUUpRoFUsyaBZHQId2bAvcrRV1fZQoaAZoCWgPQwg6kWCqWYePwJSGlFKUaBVL92gWR0CHfmXa8Hv+dX2UKGgGaAloD0MIukvirIgSgsCUhpRSlGgVTS0BaBZHQId+qiRGMGZ1fZQoaAZoCWgPQwgxCoLH5xibwJSGlFKUaBVNLQFoFkdAh4SWys0YTHV9lChoBmgJaA9DCG7DKAhOwJHAlIaUUpRoFU0tAWgWR0CHj57SApazdX2UKGgGaAloD0MImZoEbzjMmMCUhpRSlGgVTS0BaBZHQIecddu5z5p1fZQoaAZoCWgPQwgnhXmPU7yLwJSGlFKUaBVNLQFoFkdAh5zSWAwwkHV9lChoBmgJaA9DCLUX0XYUHqHAlIaUUpRoFU0tAWgWR0CHpEPgeii7dX2UKGgGaAloD0MIXKs97B3IoMCUhpRSlGgVS09oFkdAh6WWp6yB1HV9lChoBmgJaA9DCFgczvzqHaHAlIaUUpRoFUtfaBZHQIemwMOPNml1fZQoaAZoCWgPQwjoFORnk2ugwJSGlFKUaBVLZGgWR0CHrzanrIHUdX2UKGgGaAloD0MIsTIa+Tzlj8CUhpRSlGgVTS0BaBZHQIewZ1Ng0CR1fZQoaAZoCWgPQwgwDcNHJMSUwJSGlFKUaBVLvGgWR0CHuTpxFRYSdX2UKGgGaAloD0MIZRcMrnF8o8CUhpRSlGgVS49oFkdAh73++VTrFHV9lChoBmgJaA9DCMdjBiozPKHAlIaUUpRoFUs+aBZHQIfE4ZsKsuF1fZQoaAZoCWgPQwjUuaKUkLSSwJSGlFKUaBVNLQFoFkdAh8bIHLRrrXV9lChoBmgJaA9DCIvfFFYK+pTAlIaUUpRoFUv6aBZHQIfLanFYMfB1fZQoaAZoCWgPQwj4/ZsXJ/OfwJSGlFKUaBVLRWgWR0CHzvbItDlYdX2UKGgGaAloD0MIDMwKRep5o8CUhpRSlGgVTRABaBZHQIfZrLwF1Sx1fZQoaAZoCWgPQwhA+5EiEouawJSGlFKUaBVNLQFoFkdAh+fuPeYUnHV9lChoBmgJaA9DCGw+rg3FQ6PAlIaUUpRoFUv9aBZHQIfqQizLOiZ1fZQoaAZoCWgPQwgWFtwPeGCUwJSGlFKUaBVNLQFoFkdAh+tz3yqdYnV9lChoBmgJaA9DCKbW+402BKHAlIaUUpRoFUtiaBZHQIfz2WfK6nR1fZQoaAZoCWgPQwgG1JtRW/OhwJSGlFKUaBVNLQFoFkdAh/TThgmZ3XV9lChoBmgJaA9DCF1PdF1YsZ/AlIaUUpRoFUtUaBZHQIf7i1XvH951fZQoaAZoCWgPQwgAVkeOnG2hwJSGlFKUaBVLYWgWR0CH+8qOtGNJdX2UKGgGaAloD0MIw9UBEEf4n8CUhpRSlGgVTS0BaBZHQIgBa+8Gs3h1fZQoaAZoCWgPQwi0WIrkS6yOwJSGlFKUaBVNLQFoFkdAiAWg0sOG03V9lChoBmgJaA9DCIS3ByFAY6HAlIaUUpRoFUtNaBZHQIgJ7XxvvSd1fZQoaAZoCWgPQwgWpYRg1fSgwJSGlFKUaBVLYGgWR0CIEFFdcB2fdX2UKGgGaAloD0MISmBzDjauocCUhpRSlGgVSz1oFkdAiBCGq5sj3XV9lChoBmgJaA9DCIBKlSir7aTAlIaUUpRoFUv7aBZHQIgXdMAWBSV1fZQoaAZoCWgPQwiqtpvgWzuhwJSGlFKUaBVLYGgWR0CIGmpZwGW2dX2UKGgGaAloD0MIqg65GUZ4psCUhpRSlGgVTScBaBZHQIgbbqIJqqR1fZQoaAZoCWgPQwhWDi2yvTKiwJSGlFKUaBVLX2gWR0CIIGBaLXMAdX2UKGgGaAloD0MI7fDXZMU1osCUhpRSlGgVS1xoFkdAiCM5PEbYLHV9lChoBmgJaA9DCIIf1bB/C5rAlIaUUpRoFU0tAWgWR0CILQg4ffXPdX2UKGgGaAloD0MItmlsrx0ZocCUhpRSlGgVS0NoFkdAiDMnxaxHG3V9lChoBmgJaA9DCA9+4gBK0JLAlIaUUpRoFU0tAWgWR0CINb+dbxEwdX2UKGgGaAloD0MIwhN6/aldi8CUhpRSlGgVTS0BaBZHQIg7aC8OCoV1fZQoaAZoCWgPQwi/tRMluaegwJSGlFKUaBVLe2gWR0CIfkrxy4nXdX2UKGgGaAloD0MIPUSjO2j1j8CUhpRSlGgVTS0BaBZHQIh/NH+ZPVN1fZQoaAZoCWgPQwjn49pQmT6gwJSGlFKUaBVLTGgWR0CIgy4CIUJwdX2UKGgGaAloD0MIv7m/egxoosCUhpRSlGgVS0toFkdAiImL1dxAB3V9lChoBmgJaA9DCPFloghpfKDAlIaUUpRoFUuoaBZHQIiOU4m1IAh1fZQoaAZoCWgPQwjXE10XPvqgwJSGlFKUaBVNEgFoFkdAiI7EE9t/F3V9lChoBmgJaA9DCGR0QBJWqKLAlIaUUpRoFUtnaBZHQIiXgfbKzRh1fZQoaAZoCWgPQwh+/RAbnPKjwJSGlFKUaBVNLQFoFkdAiJngqNIbwXV9lChoBmgJaA9DCOs4fqhE0KLAlIaUUpRoFUvKaBZHQIiilORDCxh1fZQoaAZoCWgPQwgydy0hX2WbwJSGlFKUaBVNLQFoFkdAiKcKj8DSxHV9lChoBmgJaA9DCK8/ic+9dqLAlIaUUpRoFUueaBZHQIi2yWom5Ud1fZQoaAZoCWgPQwhuaMpOLxiZwJSGlFKUaBVNLQFoFkdAiLbSSV4X43V9lChoBmgJaA9DCJG0G30UVqnAlIaUUpRoFU0tAWgWR0CIuPII4VASdX2UKGgGaAloD0MIWhE10ccWoMCUhpRSlGgVS95oFkdAiLmN7KJVKnV9lChoBmgJaA9DCAAfvHZ5K6DAlIaUUpRoFUvwaBZHQIjNAy/KyOd1fZQoaAZoCWgPQwgPfXcri0WiwJSGlFKUaBVL/mgWR0CIzfxDst03dX2UKGgGaAloD0MISz0LQjFsqMCUhpRSlGgVTS0BaBZHQIjSHLRrrPd1fZQoaAZoCWgPQwgQJVryKHqTwJSGlFKUaBVNLQFoFkdAiNKlUp/gBXV9lChoBmgJaA9DCM+/XfaLMKDAlIaUUpRoFUtnaBZHQIjT/uPV/c51fZQoaAZoCWgPQwhtcY3PJGyawJSGlFKUaBVNLQFoFkdAiOFnctXgcnV9lChoBmgJaA9DCPg3aK+u4pjAlIaUUpRoFU0tAWgWR0CI5wPYFqzrdX2UKGgGaAloD0MITI3Qz8QVlsCUhpRSlGgVTS0BaBZHQIjntzr/sE91fZQoaAZoCWgPQwj5ghYSONGgwJSGlFKUaBVNLQFoFkdAiOmf0ulGgHV9lChoBmgJaA9DCIDTu3j3YaLAlIaUUpRoFUtmaBZHQIjySkXUH6d1fZQoaAZoCWgPQwjJc30fPlqZwJSGlFKUaBVNLQFoFkdAiQDYkeIVM3V9lChoBmgJaA9DCB2Txf3Hl5fAlIaUUpRoFU0tAWgWR0CJCNhQ3xWldX2UKGgGaAloD0MIHw4SopyJl8CUhpRSlGgVTS0BaBZHQIkK8Yj0L+h1fZQoaAZoCWgPQwioUx7dWGegwJSGlFKUaBVLh2gWR0CJEDfhuO0cdX2UKGgGaAloD0MItB6+TAS+msCUhpRSlGgVTS0BaBZHQIkT9E1EVnF1fZQoaAZoCWgPQwhaaOc0W5KfwJSGlFKUaBVLtGgWR0CJHMuieumrdX2UKGgGaAloD0MI8BezJevcn8CUhpRSlGgVS69oFkdAiR5+WfK6nXV9lChoBmgJaA9DCPKXFvWpeKLAlIaUUpRoFUuIaBZHQIkilh9b5dp1fZQoaAZoCWgPQwgiiV5GIWCfwJSGlFKUaBVLrWgWR0CJIv7O3UhFdX2UKGgGaAloD0MIzEQRUp/7osCUhpRSlGgVSz5oFkdAiST2WyC4BnV9lChoBmgJaA9DCB8xem5ZI6LAlIaUUpRoFUtXaBZHQIkrW8274BV1fZQoaAZoCWgPQwhA+iZNe/ahwJSGlFKUaBVLV2gWR0CJLWJk5IYndX2UKGgGaAloD0MI8+hGWHS4ocCUhpRSlGgVS7poFkdAiTBbXHzYmXV9lChoBmgJaA9DCARws3hxMaPAlIaUUpRoFUvCaBZHQIk1x6a9bot1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
BC-harcodemap-punish-stagnant-long/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c8abeabb43af4570ff0c6e4f35d42ef3f3d3409e6ddde7613e52009935e3710
3
  size 18973
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f4999eb9e94dd536200905bd70ab2525469061bc7a4416bc1be9578e085b553
3
  size 18973
BC-harcodemap-punish-stagnant-long/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ffb567de95f1ff4696b9e3a0c374bd8e1eea3e942974283880aae22e1eaac701
3
  size 9295
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:948cecd761577c347993c2609154da627b0a5a5d0dd2fdb190331564b8aa139a
3
  size 9295
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: RoombaAToB-harcodemap-punish-stagnant-long
17
  metrics:
18
  - type: mean_reward
19
- value: -1104.80 +/- 0.00
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: RoombaAToB-harcodemap-punish-stagnant-long
17
  metrics:
18
  - type: mean_reward
19
+ value: -535.33 +/- 0.00
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4eb18ed1b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4eb18ed240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4eb18ed2d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4eb18ed360>", "_build": "<function ActorCriticPolicy._build at 0x7f4eb18ed3f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4eb18ed480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4eb18ed510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4eb18ed5a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4eb18ed630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4eb18ed6c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4eb18ed750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4eb18ed7e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4eb18de400>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681935196268149594, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAPwI70J0zJu/Z8UlQpeaGUKLaFVCAADIQgAAyEIAAMhCAADIQgAAyEIS8QdDQ9q6v5tnskFtL51BFdDPQQAAyEIAAMhCAADIQgAAyEIAAMhC5UUwQ98z578AAMhCVU26Qt21s0IAAMhCAADIQpUhokIAAMhCAADIQsjLaUNL2yS/AADIQgAAyEJT/iNC32A2QlARkkIAAMhCAADIQoacX0KUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2T7kLSfBlMCUhpRSlIwBbJRLDYwBdJRHQIrjKQzUI9l1fZQoaAZoCWgPQwi63GCoo9CHwJSGlFKUaBVLVWgWR0CK5ZNrTH81dX2UKGgGaAloD0MIdy6M9CKqhMCUhpRSlGgVSyRoFkdAiuaKF7D2rXV9lChoBmgJaA9DCB+CqtFLuZTAlIaUUpRoFUtjaBZHQIrm59PUKAt1fZQoaAZoCWgPQwj7QPLOMbCUwJSGlFKUaBVLE2gWR0CK56CA+Y+jdX2UKGgGaAloD0MIOQt72oFah8CUhpRSlGgVSzRoFkdAiulAwXZXdXV9lChoBmgJaA9DCKvLKQGBApbAlIaUUpRoFUsfaBZHQIrqRpWV/tp1fZQoaAZoCWgPQwjL1Y9NMo2HwJSGlFKUaBVLNmgWR0CK7bq8DjiodX2UKGgGaAloD0MI46YGmq8DhcCUhpRSlGgVS0hoFkdAivKgG8mKInV9lChoBmgJaA9DCIwtBDnYz5TAlIaUUpRoFUsPaBZHQIr0fx4IKMN1fZQoaAZoCWgPQwiLNVzkTrGawJSGlFKUaBVLd2gWR0CK9rp/PPcBdX2UKGgGaAloD0MIQS0GD9ONlMCUhpRSlGgVSxdoFkdAivdUpd8iOnV9lChoBmgJaA9DCMu+K4J/g5bAlIaUUpRoFUuAaBZHQIr6fEuQIUt1fZQoaAZoCWgPQwioiqn001SZwJSGlFKUaBVLf2gWR0CK/bB0p3HJdX2UKGgGaAloD0MICDnv/+NBlcCUhpRSlGgVSxRoFkdAiwAllsguAnV9lChoBmgJaA9DCGRbBpxFUpnAlIaUUpRoFUtOaBZHQIsA/YcvM8p1fZQoaAZoCWgPQwhtqu6RrTaHwJSGlFKUaBVLPGgWR0CLAaFV1fVqdX2UKGgGaAloD0MI0SLb+b7elcCUhpRSlGgVSxVoFkdAiwODJEH+qHV9lChoBmgJaA9DCPjii/b4lZTAlIaUUpRoFUsVaBZHQIsFRY3eenR1fZQoaAZoCWgPQwic+GpH8ZSUwJSGlFKUaBVLiWgWR0CLBZ15jYqYdX2UKGgGaAloD0MICCKLNBEwksCUhpRSlGgVS3ZoFkdAiwuFDfFaS3V9lChoBmgJaA9DCDVDqiheNo7AlIaUUpRoFUtMaBZHQIsMQXuVopR1fZQoaAZoCWgPQwg7Oq5GlueUwJSGlFKUaBVLjGgWR0CLDOuLaVUudX2UKGgGaAloD0MIgSBAhp4IlsCUhpRSlGgVSxRoFkdAiw3P9UCJXXV9lChoBmgJaA9DCMfVyK4U+JvAlIaUUpRoFUuQaBZHQIsSxggHNX51fZQoaAZoCWgPQwhIisiwOtmSwJSGlFKUaBVLYGgWR0CLE+3Q2MsIdX2UKGgGaAloD0MIibfOv33licCUhpRSlGgVS0poFkdAixQ2dNFjNXV9lChoBmgJaA9DCOhsAaH105XAlIaUUpRoFUsaaBZHQIsUsLQXyiF1fZQoaAZoCWgPQwgf9GxWPRiWwJSGlFKUaBVLJ2gWR0CLFvx7zCk5dX2UKGgGaAloD0MIWTUIcyuEm8CUhpRSlGgVS4toFkdAixhv4ubqhXV9lChoBmgJaA9DCLgGtkpQq4zAlIaUUpRoFUtMaBZHQIsaDF6zE751fZQoaAZoCWgPQwgROBJoEPmZwJSGlFKUaBVLTGgWR0CLHuMLncL0dX2UKGgGaAloD0MI/BnerJF1mcCUhpRSlGgVS3FoFkdAiyC1zp5eJHV9lChoBmgJaA9DCOq0boPaVpzAlIaUUpRoFUufaBZHQIsiD4DcM3J1fZQoaAZoCWgPQwgZ5C7C5LCUwJSGlFKUaBVLGmgWR0CLIq4YrJ8wdX2UKGgGaAloD0MIEOZ2L9dSh8CUhpRSlGgVSzJoFkdAiyMX7Lt/nXV9lChoBmgJaA9DCEdxjjra/pTAlIaUUpRoFUsTaBZHQIsjZJul41R1fZQoaAZoCWgPQwhxrmGGhteawJSGlFKUaBVLdWgWR0CLJAGvfTCtdX2UKGgGaAloD0MIyeTUzvCvlMCUhpRSlGgVSx5oFkdAiySlMZgogHV9lChoBmgJaA9DCDy/KEHfbpXAlIaUUpRoFUsUaBZHQIskqIUJv5x1fZQoaAZoCWgPQwgPJzCdVv2UwJSGlFKUaBVLGmgWR0CLJMvmHP/rdX2UKGgGaAloD0MIn7DEA9oklcCUhpRSlGgVSyFoFkdAiyfShBZ6lnV9lChoBmgJaA9DCP5EZcOaRovAlIaUUpRoFUtQaBZHQIssGNzbN8p1fZQoaAZoCWgPQwiNDHIXMROcwJSGlFKUaBVLh2gWR0CLMEM+/xlQdX2UKGgGaAloD0MI14hgHOzuksCUhpRSlGgVS4RoFkdAizEKFAVwgnV9lChoBmgJaA9DCEcf8wGhHpvAlIaUUpRoFUtiaBZHQIsxITqSowV1fZQoaAZoCWgPQwhmiGNdHHaVwJSGlFKUaBVLEmgWR0CLMqGs3hn8dX2UKGgGaAloD0MIo4/5gEBOmcCUhpRSlGgVS2NoFkdAizVHOKO1fHV9lChoBmgJaA9DCO9zfLSoxpXAlIaUUpRoFUsPaBZHQIs2k4WDYiB1fZQoaAZoCWgPQwhDxqNU4lGOwJSGlFKUaBVLSGgWR0CLN4RxtHhCdX2UKGgGaAloD0MIj/zBwKOrlMCUhpRSlGgVS3hoFkdAizsLNwBHTnV9lChoBmgJaA9DCC++aI93E4bAlIaUUpRoFUs4aBZHQIs7dhkRSP51fZQoaAZoCWgPQwhtWb4u80uVwJSGlFKUaBVLE2gWR0CLPJ00WM0hdX2UKGgGaAloD0MIByeiXysflcCUhpRSlGgVSxhoFkdAiz2cgIQe3nV9lChoBmgJaA9DCCycpPmDiJTAlIaUUpRoFUsRaBZHQIs+MeGO+7F1fZQoaAZoCWgPQwhHcvkPSWWawJSGlFKUaBVLaGgWR0CLQO9cry2AdX2UKGgGaAloD0MIKxIT1GDEm8CUhpRSlGgVS6FoFkdAi0FFz2exwHV9lChoBmgJaA9DCILHt3cdGpXAlIaUUpRoFUsTaBZHQItC4rMC9yt1fZQoaAZoCWgPQwicNuM01C6bwJSGlFKUaBVLc2gWR0CLSWfwI+nqdX2UKGgGaAloD0MImfT3Urg+m8CUhpRSlGgVS31oFkdAi0rrZBcAznV9lChoBmgJaA9DCKX3ja/d7ZTAlIaUUpRoFUsQaBZHQItMH863iJh1fZQoaAZoCWgPQwhMw/AR8QmGwJSGlFKUaBVLMWgWR0CLTUh9srNGdX2UKGgGaAloD0MI8l61MgGUlcCUhpRSlGgVS4ZoFkdAi04pBgNPQHV9lChoBmgJaA9DCEkRGVYBYJbAlIaUUpRoFUuGaBZHQItPc3S8an91fZQoaAZoCWgPQwiPcFrwUjaVwJSGlFKUaBVLEWgWR0CLT6kBS1mbdX2UKGgGaAloD0MIi/z6IZaphcCUhpRSlGgVS0NoFkdAi1H4y44IbHV9lChoBmgJaA9DCKLQsu5f6JTAlIaUUpRoFUsSaBZHQItTqEBbOeJ1fZQoaAZoCWgPQwi6awn54FGawJSGlFKUaBVLV2gWR0CLVX9Ujs2OdX2UKGgGaAloD0MIn+bkRSbchcCUhpRSlGgVS0toFkdAi1asU7CBPXV9lChoBmgJaA9DCFMDzefcRI7AlIaUUpRoFUtQaBZHQIta5sXSBsh1fZQoaAZoCWgPQwg8vr1rUCOHwJSGlFKUaBVLO2gWR0CLW5GjsUqQdX2UKGgGaAloD0MIZYnOMqulm8CUhpRSlGgVS5ZoFkdAi12BAOavzXV9lChoBmgJaA9DCLe1hedVXZvAlIaUUpRoFUt7aBZHQItg2GATZg51fZQoaAZoCWgPQwg5tMh2vnWOwJSGlFKUaBVLYmgWR0CLZebVjI7vdX2UKGgGaAloD0MIq1yo/MuXi8CUhpRSlGgVS1poFkdAi2b35N47inV9lChoBmgJaA9DCKKyYU1lO5bAlIaUUpRoFUuaaBZHQItrBD/lyR11fZQoaAZoCWgPQwhZF7fRgBqGwJSGlFKUaBVLM2gWR0CLa0gSvkimdX2UKGgGaAloD0MIkJ4ih7gClcCUhpRSlGgVSxJoFkdAi20iIDYAbXV9lChoBmgJaA9DCOqRBrf1QonAlIaUUpRoFUtJaBZHQItuZOi35N51fZQoaAZoCWgPQwhQNuUKzwOVwJSGlFKUaBVLFGgWR0CLbxaM72csdX2UKGgGaAloD0MIjPUNTL5blsCUhpRSlGgVSyloFkdAi28cR15jY3V9lChoBmgJaA9DCDRKl/5Vn5vAlIaUUpRoFUufaBZHQItxWpuMuOF1fZQoaAZoCWgPQwixU6waJIyHwJSGlFKUaBVLPGgWR0CLdPXL/0dzdX2UKGgGaAloD0MIn1p9dQValcCUhpRSlGgVSxpoFkdAi3fEHlfZ3HV9lChoBmgJaA9DCNLHfEBQCJvAlIaUUpRoFUtZaBZHQIt3/+GXXy11fZQoaAZoCWgPQwg3p5IBgLaJwJSGlFKUaBVLY2gWR0CLeGwHJLdvdX2UKGgGaAloD0MIBmUaTc4ii8CUhpRSlGgVS0doFkdAi3iPZ7HAAXV9lChoBmgJaA9DCF9cqtIG+pTAlIaUUpRoFUsRaBZHQIt5hT850bN1fZQoaAZoCWgPQwi9p3LaA/eUwJSGlFKUaBVLHGgWR0CLeZFspG4JdX2UKGgGaAloD0MIo1wav/DHlMCUhpRSlGgVSxBoFkdAi3pyfUWl/HV9lChoBmgJaA9DCNNNYhBYspTAlIaUUpRoFUsWaBZHQIt7o71ZkkN1fZQoaAZoCWgPQwhI4XoULmKIwJSGlFKUaBVLPmgWR0CLe9sTFl06dX2UKGgGaAloD0MILxaGyKkWlcCUhpRSlGgVSw9oFkdAi3zMGorFwXV9lChoBmgJaA9DCCv7rgj++ZTAlIaUUpRoFUsTaBZHQIt9oEU0vXd1fZQoaAZoCWgPQwgvGFxzFwuawJSGlFKUaBVLWmgWR0CLflZvkzXSdX2UKGgGaAloD0MIWhE10YeBhcCUhpRSlGgVSzZoFkdAi4Jh3qzJIXV9lChoBmgJaA9DCOUOm8hsyYfAlIaUUpRoFUs7aBZHQIuDQwqRU3p1fZQoaAZoCWgPQwjMfXIU0IiUwJSGlFKUaBVLC2gWR0CLg1fOUt7KdX2UKGgGaAloD0MIsTGvI26nm8CUhpRSlGgVS4doFkdAi4RiVSn+AHV9lChoBmgJaA9DCDYf14Zaw5bAlIaUUpRoFUtqaBZHQIuG6rLhaTx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7d84ed1b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7d84ed240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7d84ed2d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7d84ed360>", "_build": "<function ActorCriticPolicy._build at 0x7fe7d84ed3f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe7d84ed480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7d84ed510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7d84ed5a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe7d84ed630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7d84ed6c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7d84ed750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7d84ed7e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe7d84e1e00>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681936564972229464, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAC6+b0MuOu6/hRDhQeqnZUErrWlB8i3mQRi3skIAAMhCAADIQgAAyEJadExDzSoWvwAAyEIAAMhC1fZ5QcI8kUHJwE5CAADIQgAAyELM+ENC43skQxL4PsBelQJC06OYQgAAyEIAAMhC1q+xQgAAyEIAAMhCAADIQs2dPUMVtjlAN7LFQoZw9UG2fcJBAADIQgAAyEIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImUnUC57EgcCUhpRSlIwBbJRNLQGMAXSUR0CG4T00WM0hdX2UKGgGaAloD0MItOTxtMxdoMCUhpRSlGgVSzFoFkdAhuSqzRhMJ3V9lChoBmgJaA9DCD19BP6osqHAlIaUUpRoFUs0aBZHQIbmmr2g3991fZQoaAZoCWgPQwhi+IiYYrqcwJSGlFKUaBVNLQFoFkdAhun3mNipenV9lChoBmgJaA9DCFjKMsRxGKHAlIaUUpRoFUtEaBZHQIbqdke6qbV1fZQoaAZoCWgPQwi2Z5YEAL+hwJSGlFKUaBVLcWgWR0CG9B1FH8TBdX2UKGgGaAloD0MIqWvtfdpgl8CUhpRSlGgVTS0BaBZHQIb4Um0E5hl1fZQoaAZoCWgPQwguVP61jMmgwJSGlFKUaBVLXGgWR0CG+sg+QlrudX2UKGgGaAloD0MIfc9IhEbbosCUhpRSlGgVTS0BaBZHQIb+EnLJSzh1fZQoaAZoCWgPQwgbLJyk+WqfwJSGlFKUaBVLcGgWR0CG/3t78ejmdX2UKGgGaAloD0MILCgMylTBocCUhpRSlGgVTS0BaBZHQIcBFn27FsJ1fZQoaAZoCWgPQwjn+6nxsoqjwJSGlFKUaBVLSGgWR0CHBWn5SFXadX2UKGgGaAloD0MI1GGFW77YoMCUhpRSlGgVS49oFkdAhwdU163RX3V9lChoBmgJaA9DCJMANbV0z6XAlIaUUpRoFUvBaBZHQIcKv7cfvF51fZQoaAZoCWgPQwjNVl7ytz+iwJSGlFKUaBVLX2gWR0CHDNiJfpljdX2UKGgGaAloD0MIqKePwF+CkcCUhpRSlGgVTS0BaBZHQIcNv9cbBGh1fZQoaAZoCWgPQwgmx53S4VuiwJSGlFKUaBVLbmgWR0CHFy4J/oaDdX2UKGgGaAloD0MI7/54r9roosCUhpRSlGgVTS0BaBZHQIceeNBF/hF1fZQoaAZoCWgPQwjU8C2sW5uhwJSGlFKUaBVL4GgWR0CHIw3YL9dedX2UKGgGaAloD0MIOE4K8zYCocCUhpRSlGgVTREBaBZHQIckUNQTEit1fZQoaAZoCWgPQwifHXBd4SOgwJSGlFKUaBVLj2gWR0CHJSamXPZ7dX2UKGgGaAloD0MIm1Q01tbWosCUhpRSlGgVS0VoFkdAhyuhl+Vkc3V9lChoBmgJaA9DCN3temmy6qDAlIaUUpRoFUsyaBZHQId2bAvcrRV1fZQoaAZoCWgPQwg6kWCqWYePwJSGlFKUaBVL92gWR0CHfmXa8Hv+dX2UKGgGaAloD0MIukvirIgSgsCUhpRSlGgVTS0BaBZHQId+qiRGMGZ1fZQoaAZoCWgPQwgxCoLH5xibwJSGlFKUaBVNLQFoFkdAh4SWys0YTHV9lChoBmgJaA9DCG7DKAhOwJHAlIaUUpRoFU0tAWgWR0CHj57SApazdX2UKGgGaAloD0MImZoEbzjMmMCUhpRSlGgVTS0BaBZHQIecddu5z5p1fZQoaAZoCWgPQwgnhXmPU7yLwJSGlFKUaBVNLQFoFkdAh5zSWAwwkHV9lChoBmgJaA9DCLUX0XYUHqHAlIaUUpRoFU0tAWgWR0CHpEPgeii7dX2UKGgGaAloD0MIXKs97B3IoMCUhpRSlGgVS09oFkdAh6WWp6yB1HV9lChoBmgJaA9DCFgczvzqHaHAlIaUUpRoFUtfaBZHQIemwMOPNml1fZQoaAZoCWgPQwjoFORnk2ugwJSGlFKUaBVLZGgWR0CHrzanrIHUdX2UKGgGaAloD0MIsTIa+Tzlj8CUhpRSlGgVTS0BaBZHQIewZ1Ng0CR1fZQoaAZoCWgPQwgwDcNHJMSUwJSGlFKUaBVLvGgWR0CHuTpxFRYSdX2UKGgGaAloD0MIZRcMrnF8o8CUhpRSlGgVS49oFkdAh73++VTrFHV9lChoBmgJaA9DCMdjBiozPKHAlIaUUpRoFUs+aBZHQIfE4ZsKsuF1fZQoaAZoCWgPQwjUuaKUkLSSwJSGlFKUaBVNLQFoFkdAh8bIHLRrrXV9lChoBmgJaA9DCIvfFFYK+pTAlIaUUpRoFUv6aBZHQIfLanFYMfB1fZQoaAZoCWgPQwj4/ZsXJ/OfwJSGlFKUaBVLRWgWR0CHzvbItDlYdX2UKGgGaAloD0MIDMwKRep5o8CUhpRSlGgVTRABaBZHQIfZrLwF1Sx1fZQoaAZoCWgPQwhA+5EiEouawJSGlFKUaBVNLQFoFkdAh+fuPeYUnHV9lChoBmgJaA9DCGw+rg3FQ6PAlIaUUpRoFUv9aBZHQIfqQizLOiZ1fZQoaAZoCWgPQwgWFtwPeGCUwJSGlFKUaBVNLQFoFkdAh+tz3yqdYnV9lChoBmgJaA9DCKbW+402BKHAlIaUUpRoFUtiaBZHQIfz2WfK6nR1fZQoaAZoCWgPQwgG1JtRW/OhwJSGlFKUaBVNLQFoFkdAh/TThgmZ3XV9lChoBmgJaA9DCF1PdF1YsZ/AlIaUUpRoFUtUaBZHQIf7i1XvH951fZQoaAZoCWgPQwgAVkeOnG2hwJSGlFKUaBVLYWgWR0CH+8qOtGNJdX2UKGgGaAloD0MIw9UBEEf4n8CUhpRSlGgVTS0BaBZHQIgBa+8Gs3h1fZQoaAZoCWgPQwi0WIrkS6yOwJSGlFKUaBVNLQFoFkdAiAWg0sOG03V9lChoBmgJaA9DCIS3ByFAY6HAlIaUUpRoFUtNaBZHQIgJ7XxvvSd1fZQoaAZoCWgPQwgWpYRg1fSgwJSGlFKUaBVLYGgWR0CIEFFdcB2fdX2UKGgGaAloD0MISmBzDjauocCUhpRSlGgVSz1oFkdAiBCGq5sj3XV9lChoBmgJaA9DCIBKlSir7aTAlIaUUpRoFUv7aBZHQIgXdMAWBSV1fZQoaAZoCWgPQwiqtpvgWzuhwJSGlFKUaBVLYGgWR0CIGmpZwGW2dX2UKGgGaAloD0MIqg65GUZ4psCUhpRSlGgVTScBaBZHQIgbbqIJqqR1fZQoaAZoCWgPQwhWDi2yvTKiwJSGlFKUaBVLX2gWR0CIIGBaLXMAdX2UKGgGaAloD0MI7fDXZMU1osCUhpRSlGgVS1xoFkdAiCM5PEbYLHV9lChoBmgJaA9DCIIf1bB/C5rAlIaUUpRoFU0tAWgWR0CILQg4ffXPdX2UKGgGaAloD0MItmlsrx0ZocCUhpRSlGgVS0NoFkdAiDMnxaxHG3V9lChoBmgJaA9DCA9+4gBK0JLAlIaUUpRoFU0tAWgWR0CINb+dbxEwdX2UKGgGaAloD0MIwhN6/aldi8CUhpRSlGgVTS0BaBZHQIg7aC8OCoV1fZQoaAZoCWgPQwi/tRMluaegwJSGlFKUaBVLe2gWR0CIfkrxy4nXdX2UKGgGaAloD0MIPUSjO2j1j8CUhpRSlGgVTS0BaBZHQIh/NH+ZPVN1fZQoaAZoCWgPQwjn49pQmT6gwJSGlFKUaBVLTGgWR0CIgy4CIUJwdX2UKGgGaAloD0MIv7m/egxoosCUhpRSlGgVS0toFkdAiImL1dxAB3V9lChoBmgJaA9DCPFloghpfKDAlIaUUpRoFUuoaBZHQIiOU4m1IAh1fZQoaAZoCWgPQwjXE10XPvqgwJSGlFKUaBVNEgFoFkdAiI7EE9t/F3V9lChoBmgJaA9DCGR0QBJWqKLAlIaUUpRoFUtnaBZHQIiXgfbKzRh1fZQoaAZoCWgPQwh+/RAbnPKjwJSGlFKUaBVNLQFoFkdAiJngqNIbwXV9lChoBmgJaA9DCOs4fqhE0KLAlIaUUpRoFUvKaBZHQIiilORDCxh1fZQoaAZoCWgPQwgydy0hX2WbwJSGlFKUaBVNLQFoFkdAiKcKj8DSxHV9lChoBmgJaA9DCK8/ic+9dqLAlIaUUpRoFUueaBZHQIi2yWom5Ud1fZQoaAZoCWgPQwhuaMpOLxiZwJSGlFKUaBVNLQFoFkdAiLbSSV4X43V9lChoBmgJaA9DCJG0G30UVqnAlIaUUpRoFU0tAWgWR0CIuPII4VASdX2UKGgGaAloD0MIWhE10ccWoMCUhpRSlGgVS95oFkdAiLmN7KJVKnV9lChoBmgJaA9DCAAfvHZ5K6DAlIaUUpRoFUvwaBZHQIjNAy/KyOd1fZQoaAZoCWgPQwgPfXcri0WiwJSGlFKUaBVL/mgWR0CIzfxDst03dX2UKGgGaAloD0MISz0LQjFsqMCUhpRSlGgVTS0BaBZHQIjSHLRrrPd1fZQoaAZoCWgPQwgQJVryKHqTwJSGlFKUaBVNLQFoFkdAiNKlUp/gBXV9lChoBmgJaA9DCM+/XfaLMKDAlIaUUpRoFUtnaBZHQIjT/uPV/c51fZQoaAZoCWgPQwhtcY3PJGyawJSGlFKUaBVNLQFoFkdAiOFnctXgcnV9lChoBmgJaA9DCPg3aK+u4pjAlIaUUpRoFU0tAWgWR0CI5wPYFqzrdX2UKGgGaAloD0MITI3Qz8QVlsCUhpRSlGgVTS0BaBZHQIjntzr/sE91fZQoaAZoCWgPQwj5ghYSONGgwJSGlFKUaBVNLQFoFkdAiOmf0ulGgHV9lChoBmgJaA9DCIDTu3j3YaLAlIaUUpRoFUtmaBZHQIjySkXUH6d1fZQoaAZoCWgPQwjJc30fPlqZwJSGlFKUaBVNLQFoFkdAiQDYkeIVM3V9lChoBmgJaA9DCB2Txf3Hl5fAlIaUUpRoFU0tAWgWR0CJCNhQ3xWldX2UKGgGaAloD0MIHw4SopyJl8CUhpRSlGgVTS0BaBZHQIkK8Yj0L+h1fZQoaAZoCWgPQwioUx7dWGegwJSGlFKUaBVLh2gWR0CJEDfhuO0cdX2UKGgGaAloD0MItB6+TAS+msCUhpRSlGgVTS0BaBZHQIkT9E1EVnF1fZQoaAZoCWgPQwhaaOc0W5KfwJSGlFKUaBVLtGgWR0CJHMuieumrdX2UKGgGaAloD0MI8BezJevcn8CUhpRSlGgVS69oFkdAiR5+WfK6nXV9lChoBmgJaA9DCPKXFvWpeKLAlIaUUpRoFUuIaBZHQIkilh9b5dp1fZQoaAZoCWgPQwgiiV5GIWCfwJSGlFKUaBVLrWgWR0CJIv7O3UhFdX2UKGgGaAloD0MIzEQRUp/7osCUhpRSlGgVSz5oFkdAiST2WyC4BnV9lChoBmgJaA9DCB8xem5ZI6LAlIaUUpRoFUtXaBZHQIkrW8274BV1fZQoaAZoCWgPQwhA+iZNe/ahwJSGlFKUaBVLV2gWR0CJLWJk5IYndX2UKGgGaAloD0MI8+hGWHS4ocCUhpRSlGgVS7poFkdAiTBbXHzYmXV9lChoBmgJaA9DCARws3hxMaPAlIaUUpRoFUvCaBZHQIk1x6a9bot1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7042f36d0afc55c7a633f9198e42f81d4c7f63fb241bf0838834c87f5983ab1e
3
- size 1262426
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6f5ee2554b0f45adc5083c120d3c2f18dbc8c51a6104cb6cdddddeb750b7171
3
+ size 723518
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -1104.7967945098876, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T13:28:27.833164"}
 
1
+ {"mean_reward": -535.333463897705, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T13:49:57.810492"}