culteejen commited on
Commit
fe5b631
·
1 Parent(s): dbd76f7

Upload model to Hugging Face

Browse files
BC-harcodemap-punish-stagnant.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:08babf05e8c32cf5bef53385af8e4c6aef6733c3a2c66dcf0e79cd41e6c36cdb
3
- size 44143
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:115f46b32f6384e2d04b0090c61e2c6c9877412b3f84d92d243f5f140daffb28
3
+ size 44147
BC-harcodemap-punish-stagnant/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc26c2f11b0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc26c2f1240>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc26c2f12d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc26c2f1360>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fc26c2f13f0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fc26c2f1480>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc26c2f1510>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc26c2f15a0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fc26c2f1630>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc26c2f16c0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc26c2f1750>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc26c2f17e0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fc26c2e2100>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
@@ -48,7 +48,7 @@
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1681935267510309066,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAPGS90LNaz+/AADIQrMhd0IAAMhCA1/6QfG45EEShhxC1dSFQgAAyELnxvRCcJ6TPwAAyELU3gJCO2UPQhPyYkKlZYdCAADIQgXarUL+2nRCE4/cQj97UL8AAMhCG+xzQgAAyEKH6HNCbMJdQpBugUIAAMhCAADIQibkykJnEAdADcqBQsN8lEIAAMhCAADIQgAAyEL05WJCY2RMQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -70,7 +70,7 @@
70
  "_current_progress_remaining": -0.010346666666666726,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYr1RK5wJkcCUhpRSlIwBbJRNLQGMAXSUR0CShQgpz90jdX2UKGgGaAloD0MIcLa5MR2IjcCUhpRSlGgVTS0BaBZHQJKFDAfuCwt1fZQoaAZoCWgPQwitpYC078eTwJSGlFKUaBVNLQFoFkdAkocPdVNpNHV9lChoBmgJaA9DCNJT5BBR9YTAlIaUUpRoFU0tAWgWR0CSjOf4h2W6dX2UKGgGaAloD0MIJXoZxfJrmcCUhpRSlGgVS35oFkdAkpO4QjD8+HV9lChoBmgJaA9DCJW6ZByzdpDAlIaUUpRoFU0tAWgWR0CSlVYl6Z6VdX2UKGgGaAloD0MIyJQPQdU/lMCUhpRSlGgVTS0BaBZHQJKVWGXXyy51fZQoaAZoCWgPQwhoklhS/seSwJSGlFKUaBVNLQFoFkdAkpcyNKh+OXV9lChoBmgJaA9DCLKFIAe1n5PAlIaUUpRoFU0tAWgWR0CSpE+wkgOjdX2UKGgGaAloD0MIxlIkX8lajMCUhpRSlGgVTS0BaBZHQJKmLwazeGh1fZQoaAZoCWgPQwgiVRSvEneRwJSGlFKUaBVNLQFoFkdAkqYy9h7VrnV9lChoBmgJaA9DCFciUP1jq4/AlIaUUpRoFU0tAWgWR0CSp2GiYb84dX2UKGgGaAloD0MIFK+ytglWj8CUhpRSlGgVTS0BaBZHQJKw0MmWt2d1fZQoaAZoCWgPQwjdPxaiU8+ewJSGlFKUaBVL8mgWR0CSsT6GQCCBdX2UKGgGaAloD0MI/aTap+PBi8CUhpRSlGgVTS0BaBZHQJKygbzbvgF1fZQoaAZoCWgPQwhbI4JxkOSTwJSGlFKUaBVNLQFoFkdAkrKEExIrfHV9lChoBmgJaA9DCKeVQiDn9pPAlIaUUpRoFU0tAWgWR0CSwOnezlcRdX2UKGgGaAloD0MIZW8p56uUkMCUhpRSlGgVTS0BaBZHQJLhmdPLxI91fZQoaAZoCWgPQwiZYaOsz22SwJSGlFKUaBVNLQFoFkdAkuI4fW+XaHV9lChoBmgJaA9DCE6XxcS2vZLAlIaUUpRoFU0tAWgWR0CS4jlf7aZhdX2UKGgGaAloD0MIjXqIRjcQjsCUhpRSlGgVTS0BaBZHQJLsmSFGoaV1fZQoaAZoCWgPQwheKjbm9eiRwJSGlFKUaBVNLQFoFkdAkuz72Dg62nV9lChoBmgJaA9DCLDHREoTmZLAlIaUUpRoFU0tAWgWR0CS7jZNfw7UdX2UKGgGaAloD0MIJa34hqIlkcCUhpRSlGgVTS0BaBZHQJLuOgPEsJ91fZQoaAZoCWgPQwjZzYx+VDGOwJSGlFKUaBVNLQFoFkdAkvs/a+N96XV9lChoBmgJaA9DCE4lA0AVwpHAlIaUUpRoFU0tAWgWR0CS+5PepGWldX2UKGgGaAloD0MIZOYCl4dmkMCUhpRSlGgVTS0BaBZHQJL8Z3os7Mh1fZQoaAZoCWgPQwjBG9KoYAaTwJSGlFKUaBVNLQFoFkdAkvxpcC5mRXV9lChoBmgJaA9DCG8Sg8DqnJLAlIaUUpRoFU0tAWgWR0CTCrz5oGpudX2UKGgGaAloD0MITaCIRUzQk8CUhpRSlGgVTS0BaBZHQJMLQgfU4Jh1fZQoaAZoCWgPQwi2MXbCK1qRwJSGlFKUaBVNLQFoFkdAkwylme18cHV9lChoBmgJaA9DCDDw3HtYUZLAlIaUUpRoFU0tAWgWR0CTDKlu3trsdX2UKGgGaAloD0MIGR2QhP2ijMCUhpRSlGgVTS0BaBZHQJMb69cry2B1fZQoaAZoCWgPQwgHzhlRSmeSwJSGlFKUaBVNLQFoFkdAkxwyosI3SHV9lChoBmgJaA9DCFU01v4erpHAlIaUUpRoFU0tAWgWR0CTHUY6XBxhdX2UKGgGaAloD0MIvMlv0Skuk8CUhpRSlGgVTS0BaBZHQJMdSSNfgJl1fZQoaAZoCWgPQwjfNehLX+CdwJSGlFKUaBVL7WgWR0CTJjhl18sudX2UKGgGaAloD0MIP1bw2xBVhMCUhpRSlGgVTS0BaBZHQJMn8qaw2VF1fZQoaAZoCWgPQwj7k/jcSZuTwJSGlFKUaBVNLQFoFkdAkyhbGFSKnHV9lChoBmgJaA9DCLH34osm45LAlIaUUpRoFU0tAWgWR0CTKZHLA57xdX2UKGgGaAloD0MIo1nZPtT8kcCUhpRSlGgVTS0BaBZHQJM1T3ztkWh1fZQoaAZoCWgPQwh5AmGnKKaRwJSGlFKUaBVNLQFoFkdAkzcHeWOZLXV9lChoBmgJaA9DCHnKarr+o4zAlIaUUpRoFU0tAWgWR0CTN3FMIu5CdX2UKGgGaAloD0MIVrjlI2k4kcCUhpRSlGgVTS0BaBZHQJM4pwQ176Z1fZQoaAZoCWgPQwiwVu2akByewJSGlFKUaBVL+mgWR0CTQt1SflIVdX2UKGgGaAloD0MIkdEBSWhqkMCUhpRSlGgVTS0BaBZHQJNsB6IFeOZ1fZQoaAZoCWgPQwjZl2w82EuQwJSGlFKUaBVNLQFoFkdAk2w7mp2lmHV9lChoBmgJaA9DCPQXesQ4RJLAlIaUUpRoFU0tAWgWR0CTbXAyEcsEdX2UKGgGaAloD0MIjIaMR7mLlcCUhpRSlGgVTS0BaBZHQJN3WpAD7qJ1fZQoaAZoCWgPQwgmxjL9UqSAwJSGlFKUaBVNLQFoFkdAk3sD8HfMwHV9lChoBmgJaA9DCKwfm+SndoXAlIaUUpRoFU0tAWgWR0CTe1AS39aVdX2UKGgGaAloD0MIogxVMVUpkMCUhpRSlGgVTS0BaBZHQJN8PgXMyJt1fZQoaAZoCWgPQwgqV3iX6wicwJSGlFKUaBVL6mgWR0CTgZf0VafSdX2UKGgGaAloD0MIbECEuLL5jsCUhpRSlGgVTS0BaBZHQJOI1s9B8hN1fZQoaAZoCWgPQwhm2v6VteKNwJSGlFKUaBVNLQFoFkdAk4k5XdTHbXV9lChoBmgJaA9DCOif4GLFuJHAlIaUUpRoFU0tAWgWR0CTimQJXyRTdX2UKGgGaAloD0MIMZi/QsZJjsCUhpRSlGgVTS0BaBZHQJOQvHn2ZiN1fZQoaAZoCWgPQwh9dVWgBn6SwJSGlFKUaBVNLQFoFkdAk5hgSamXPnV9lChoBmgJaA9DCNzUQPOJl5DAlIaUUpRoFU0tAWgWR0CTmM8E3bVSdX2UKGgGaAloD0MIbAa4INsPjMCUhpRSlGgVTS0BaBZHQJOaF/LDAJt1fZQoaAZoCWgPQwhpVrYPyX6RwJSGlFKUaBVNLQFoFkdAk6E0RJ2+wnV9lChoBmgJaA9DCHY1ecpay5PAlIaUUpRoFU0tAWgWR0CTqg4GD+R6dX2UKGgGaAloD0MIgjgPJ8BikcCUhpRSlGgVTS0BaBZHQJOqYtjCpFV1fZQoaAZoCWgPQwgNjLysSTWNwJSGlFKUaBVNLQFoFkdAk6u9r433pXV9lChoBmgJaA9DCGWoiqnUUZDAlIaUUpRoFU0tAWgWR0CTsfofSx7idX2UKGgGaAloD0MI46lHGpyyj8CUhpRSlGgVTS0BaBZHQJO6BiTdLxt1fZQoaAZoCWgPQwgxs89jVLiUwJSGlFKUaBVNLQFoFkdAk7psRYigTXV9lChoBmgJaA9DCN9wH7nFiJDAlIaUUpRoFU0tAWgWR0CTu7YywfQsdX2UKGgGaAloD0MIYAMixDWZk8CUhpRSlGgVTS0BaBZHQJPCNx//ech1fZQoaAZoCWgPQwjjqrLv2q2UwJSGlFKUaBVNLQFoFkdAk8sIQrc0tXV9lChoBmgJaA9DCPLOoQxFuZLAlIaUUpRoFU0tAWgWR0CTy37IDHOsdX2UKGgGaAloD0MIGmmpvB35ksCUhpRSlGgVTS0BaBZHQJPNITwlSjx1fZQoaAZoCWgPQwiBs5QshwuOwJSGlFKUaBVNLQFoFkdAk9JSfcvdunV9lChoBmgJaA9DCCP1nspZS5PAlIaUUpRoFU0tAWgWR0CT+8225QP7dX2UKGgGaAloD0MIpG/SNEiVkcCUhpRSlGgVTS0BaBZHQJP8GHgxagV1fZQoaAZoCWgPQwilEp7Q62OKwJSGlFKUaBVNLQFoFkdAk/z4fbKzRnV9lChoBmgJaA9DCGU3M/oRB4zAlIaUUpRoFU0tAWgWR0CUAnRtgrpadX2UKGgGaAloD0MIPfGcLfDMm8CUhpRSlGgVS/ZoFkdAlAbmOyVv/HV9lChoBmgJaA9DCB5OYDpNXZDAlIaUUpRoFU0tAWgWR0CUCITV2A5JdX2UKGgGaAloD0MInu3RG+6uj8CUhpRSlGgVTS0BaBZHQJQJW0LMLWt1fZQoaAZoCWgPQwgK2uTwyUeLwJSGlFKUaBVNLQFoFkdAlA3ElzEJjXV9lChoBmgJaA9DCNKrAUoz55DAlIaUUpRoFU0tAWgWR0CUE0nWJ79idX2UKGgGaAloD0MItTS3QniyjcCUhpRSlGgVTS0BaBZHQJQV5SBK+SN1fZQoaAZoCWgPQwjyW3SylDySwJSGlFKUaBVNLQFoFkdAlBfGG/N7jXV9lChoBmgJaA9DCNHrT+IjMpbAlIaUUpRoFU0tAWgWR0CUHotqHoHLdX2UKGgGaAloD0MIU8vW+gI0lMCUhpRSlGgVTS0BaBZHQJQkq22G7Bh1fZQoaAZoCWgPQwhpqifzP9mTwJSGlFKUaBVNLQFoFkdAlCdUlzEJjXV9lChoBmgJaA9DCNANTdnJf5TAlIaUUpRoFU0tAWgWR0CUKN/NJOFhdX2UKGgGaAloD0MI+pgPCNTck8CUhpRSlGgVTS0BaBZHQJQvYxIre691fZQoaAZoCWgPQwibAS7I1peRwJSGlFKUaBVNLQFoFkdAlDUT7yhBaHV9lChoBmgJaA9DCFA25QoPNpbAlIaUUpRoFU0tAWgWR0CUN8ZgG8mKdX2UKGgGaAloD0MIxLXawx5ykcCUhpRSlGgVTS0BaBZHQJQ5mRyOrAB1fZQoaAZoCWgPQwjFG5lHvheTwJSGlFKUaBVNLQFoFkdAlD//kvK2a3V9lChoBmgJaA9DCFJ95xdlopDAlIaUUpRoFU0tAWgWR0CURSvsqrimdX2UKGgGaAloD0MIPNo4Yo2skMCUhpRSlGgVTS0BaBZHQJRG6P0Zm7J1fZQoaAZoCWgPQwiny2JiI2CUwJSGlFKUaBVNLQFoFkdAlEfLgflp5HV9lChoBmgJaA9DCDlCBvL86pHAlIaUUpRoFU0tAWgWR0CUS+cW0qpcdX2UKGgGaAloD0MILJrOTnZFkMCUhpRSlGgVTS0BaBZHQJRRZuAI6bR1fZQoaAZoCWgPQwj6sx8pUrScwJSGlFKUaBVL/WgWR0CUUz0gr6LwdX2UKGgGaAloD0MIZAPpYkMRlMCUhpRSlGgVTS0BaBZHQJRUPcFhXsB1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fda369ed1b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fda369ed240>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fda369ed2d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fda369ed360>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fda369ed3f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fda369ed480>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fda369ed510>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fda369ed5a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fda369ed630>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fda369ed6c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fda369ed750>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fda369ed7e0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fda369de700>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
 
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1681937284845865772,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACfA/EKtSd4+R3+BQpk+OUJriulBG8j7QcR8WELkCIZCAADIQjUop0LBY+1Cxpg3wE9kX0IAAMhCAADIQldMuUJ7M4FCAADIQsqnVUIXMJpCO0v3QrdgjD86HIVCn7A/QorLnEKLbFdCAADIQgAAyELLCsVCPqqHQixB1ULI5ifAOD2QQgAAyEIAAMhCHlhjQgAAyEIAAMhC1vchQqEiM0KUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
70
  "_current_progress_remaining": -0.010346666666666726,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX7THC4lWhMCUhpRSlIwBbJRNLQGMAXSUR0CQhdCFK02MdX2UKGgGaAloD0MI0uKMYa43gMCUhpRSlGgVTS0BaBZHQJCIrW6K+BZ1fZQoaAZoCWgPQwh1P6cgX1KCwJSGlFKUaBVNLQFoFkdAkIn4O+ZgHHV9lChoBmgJaA9DCIvCLorugJLAlIaUUpRoFUuyaBZHQJCNu8brC3x1fZQoaAZoCWgPQwgwLH++TYOHwJSGlFKUaBVNLQFoFkdAkI3WoNutOnV9lChoBmgJaA9DCJrQJLFEVYTAlIaUUpRoFU0tAWgWR0CQlm/pt78fdX2UKGgGaAloD0MIyCWOPNAIecCUhpRSlGgVTS0BaBZHQJCXcSZjQRh1fZQoaAZoCWgPQwhxV68igxKHwJSGlFKUaBVNLQFoFkdAkJrB7zCk43V9lChoBmgJaA9DCB8UlKJ1vIbAlIaUUpRoFU0tAWgWR0CQmudKdxyXdX2UKGgGaAloD0MICwith+/YhMCUhpRSlGgVTS0BaBZHQJCiXf779AJ1fZQoaAZoCWgPQwgi4uZUMvaGwJSGlFKUaBVNLQFoFkdAkKN7BbfP5nV9lChoBmgJaA9DCDdV98hGrYHAlIaUUpRoFU0tAWgWR0CQpmcYZVGTdX2UKGgGaAloD0MIh4px/iZ4gsCUhpRSlGgVTS0BaBZHQJCmfEvTPSl1fZQoaAZoCWgPQwh6OIHp1EyEwJSGlFKUaBVNLQFoFkdAkKzWYF7laXV9lChoBmgJaA9DCEJ23sYGJITAlIaUUpRoFU0tAWgWR0CQrmHTqjagdX2UKGgGaAloD0MIp7BSQcX3gMCUhpRSlGgVTS0BaBZHQJCy3o/zJ6p1fZQoaAZoCWgPQwgr3PKRVL6CwJSGlFKUaBVNLQFoFkdAkLMCxiXpn3V9lChoBmgJaA9DCHtntFW5GJLAlIaUUpRoFUt4aBZHQJC00kRjBmB1fZQoaAZoCWgPQwjTLxFvPQOBwJSGlFKUaBVNLQFoFkdAkOAGBFuvU3V9lChoBmgJaA9DCP+VlSbFVYLAlIaUUpRoFU0tAWgWR0CQ5DWpZOi4dX2UKGgGaAloD0MI0hitoypwhsCUhpRSlGgVTS0BaBZHQJDkS7qY7aJ1fZQoaAZoCWgPQwhV9l0RPDWEwJSGlFKUaBVNLQFoFkdAkOVbGBFuvXV9lChoBmgJaA9DCDroEg4dHYHAlIaUUpRoFU0tAWgWR0CQ7STX8O0+dX2UKGgGaAloD0MI+nspPAjkgMCUhpRSlGgVTS0BaBZHQJDzGVZ9uxd1fZQoaAZoCWgPQwixprIorPaDwJSGlFKUaBVNLQFoFkdAkPNTRx95QnV9lChoBmgJaA9DCAX52cj1koTAlIaUUpRoFU0tAWgWR0CQ9Ux6v7m/dX2UKGgGaAloD0MIn+OjxXnghcCUhpRSlGgVTS0BaBZHQJD92UliSaF1fZQoaAZoCWgPQwg5nPnVnEKAwJSGlFKUaBVNLQFoFkdAkQPmO+7DmHV9lChoBmgJaA9DCIW1MXaCYnnAlIaUUpRoFU0tAWgWR0CRBCVPN3W4dX2UKGgGaAloD0MIB++rcgGtg8CUhpRSlGgVTS0BaBZHQJEGEb2lEZ11fZQoaAZoCWgPQwjAkqtY3EmBwJSGlFKUaBVNLQFoFkdAkQ4XY6GQCHV9lChoBmgJaA9DCH3ogvrWn37AlIaUUpRoFU0tAWgWR0CRE2YJE6T4dX2UKGgGaAloD0MI3GJ+bgitg8CUhpRSlGgVTS0BaBZHQJETiQyRB/t1fZQoaAZoCWgPQwiCcAUUyreCwJSGlFKUaBVNLQFoFkdAkRUi/9Hc13V9lChoBmgJaA9DCFis4SIXyoXAlIaUUpRoFU0tAWgWR0CRG7qZtvXLdX2UKGgGaAloD0MIyeTUzrDfg8CUhpRSlGgVTS0BaBZHQJEgrqB3A211fZQoaAZoCWgPQwgqq+l6ogqHwJSGlFKUaBVNLQFoFkdAkSDqoddVvXV9lChoBmgJaA9DCIRLx5xHQYPAlIaUUpRoFU0tAWgWR0CRIrcj7hvSdX2UKGgGaAloD0MI4jrGFfdihcCUhpRSlGgVTS0BaBZHQJErPp1RtP51fZQoaAZoCWgPQwhMqODwAjB7wJSGlFKUaBVNLQFoFkdAkTGNF8XvY3V9lChoBmgJaA9DCC/APjp1P4TAlIaUUpRoFU0tAWgWR0CRMa8IAwPAdX2UKGgGaAloD0MI83SuKCUngMCUhpRSlGgVTS0BaBZHQJEzjNpudf91fZQoaAZoCWgPQwgFUIwsObCCwJSGlFKUaBVNLQFoFkdAkTysfvF3p3V9lChoBmgJaA9DCMVTjzR4tnzAlIaUUpRoFU0tAWgWR0CRRBgvlEJCdX2UKGgGaAloD0MIE2OZfkkLgsCUhpRSlGgVTS0BaBZHQJFERmkFfRh1fZQoaAZoCWgPQwg3GsBboNx/wJSGlFKUaBVNLQFoFkdAkUYQskIHDHV9lChoBmgJaA9DCLGlR1P9eIjAlIaUUpRoFU0tAWgWR0CRbyornTy8dX2UKGgGaAloD0MIsp3vp2YehMCUhpRSlGgVTS0BaBZHQJF1WHi3ocJ1fZQoaAZoCWgPQwjVQsnkdA6CwJSGlFKUaBVNLQFoFkdAkXV9l/Yra3V9lChoBmgJaA9DCGmqJ/OvyoTAlIaUUpRoFU0tAWgWR0CRdyiHIp6QdX2UKGgGaAloD0MIyhgfZi/0fsCUhpRSlGgVTS0BaBZHQJF/koBq9Gt1fZQoaAZoCWgPQwj1aKonMxCEwJSGlFKUaBVNLQFoFkdAkYYs9B8hLXV9lChoBmgJaA9DCIW0xqCTqoDAlIaUUpRoFU0tAWgWR0CRhm2pQ1rJdX2UKGgGaAloD0MIxqNUwtNHh8CUhpRSlGgVTS0BaBZHQJGIZKraM751fZQoaAZoCWgPQwgFjC5vniiVwJSGlFKUaBVL+WgWR0CRjW9Wp6yCdX2UKGgGaAloD0MI7kJznSb8gsCUhpRSlGgVTS0BaBZHQJGUgc94eLh1fZQoaAZoCWgPQwh1kNeDSWWFwJSGlFKUaBVNLQFoFkdAkZSf6fra/XV9lChoBmgJaA9DCE+vlGVIGYbAlIaUUpRoFU0tAWgWR0CRlnGGEf1ZdX2UKGgGaAloD0MIyjMvhx09iMCUhpRSlGgVTS0BaBZHQJGaNazNUwV1fZQoaAZoCWgPQwgbLQd66I6BwJSGlFKUaBVNLQFoFkdAkaM3hn8KonV9lChoBmgJaA9DCHwqpz2FOYLAlIaUUpRoFU0tAWgWR0CRo136Q/5ddX2UKGgGaAloD0MIVwqBXEIYg8CUhpRSlGgVTS0BaBZHQJGk8J4SpR51fZQoaAZoCWgPQwjEsplDUkR7wJSGlFKUaBVNLQFoFkdAkap51q33H3V9lChoBmgJaA9DCAjpKXLor4LAlIaUUpRoFU0tAWgWR0CRtABZ6lchdX2UKGgGaAloD0MI2SWqt8bwgMCUhpRSlGgVTS0BaBZHQJG0JuAI6bR1fZQoaAZoCWgPQwhj78UXLSqAwJSGlFKUaBVNLQFoFkdAkbZoZZSvT3V9lChoBmgJaA9DCORNfotOdoPAlIaUUpRoFU0tAWgWR0CRvGwwCbMHdX2UKGgGaAloD0MIvK5fsPtVhcCUhpRSlGgVTS0BaBZHQJHFG28Zk091fZQoaAZoCWgPQwhOYhBYWTyDwJSGlFKUaBVNLQFoFkdAkcVTYywfQ3V9lChoBmgJaA9DCHu/0Y77KoDAlIaUUpRoFU0tAWgWR0CRxugYxcmjdX2UKGgGaAloD0MIhnMNM/TqgMCUhpRSlGgVTS0BaBZHQJHLHf779AJ1fZQoaAZoCWgPQwifxyjPPOmGwJSGlFKUaBVNLQFoFkdAkdPTmGM4tHV9lChoBmgJaA9DCP9cNGT8J3jAlIaUUpRoFU0tAWgWR0CR0/0Bfa6CdX2UKGgGaAloD0MIhSUeUBb4gsCUhpRSlGgVTS0BaBZHQJHV+yY5T611fZQoaAZoCWgPQwi8saAwSBmDwJSGlFKUaBVNLQFoFkdAkf4onjQzDXV9lChoBmgJaA9DCByz7EmgmYLAlIaUUpRoFU0tAWgWR0CSBA2U0Nz9dX2UKGgGaAloD0MIEM6njjVIhcCUhpRSlGgVTS0BaBZHQJIENwxWT5h1fZQoaAZoCWgPQwjVJeMYSaaCwJSGlFKUaBVNLQFoFkdAkgWhZha1TnV9lChoBmgJaA9DCBObj2vDZn/AlIaUUpRoFU0tAWgWR0CSCMPH1e0HdX2UKGgGaAloD0MIoWr0asDNhMCUhpRSlGgVTS0BaBZHQJIQOcBltj11fZQoaAZoCWgPQwjyJOmaSSqDwJSGlFKUaBVNLQFoFkdAkhBfcrRSg3V9lChoBmgJaA9DCGgibHiad4fAlIaUUpRoFU0tAWgWR0CSEhtBv73xdX2UKGgGaAloD0MIILWJk5utgsCUhpRSlGgVTS0BaBZHQJIXEzch1T11fZQoaAZoCWgPQwjo9SfxuXiFwJSGlFKUaBVNLQFoFkdAkh9DP0I1L3V9lChoBmgJaA9DCPxVgO82EIPAlIaUUpRoFU0tAWgWR0CSH17yhBZ7dX2UKGgGaAloD0MIP8bctaRqhMCUhpRSlGgVTS0BaBZHQJIhFNQCSzR1fZQoaAZoCWgPQwjds67RkoeAwJSGlFKUaBVNLQFoFkdAkiY7lzU7S3V9lChoBmgJaA9DCI+NQLx+XpLAlIaUUpRoFUuuaBZHQJIoAlC1JDp1fZQoaAZoCWgPQwjFO8CTNnKDwJSGlFKUaBVNLQFoFkdAki2b5uZTh3V9lChoBmgJaA9DCA9eu7Th44LAlIaUUpRoFU0tAWgWR0CSL1Mbm2b5dX2UKGgGaAloD0MI9WbUfNWUhMCUhpRSlGgVTS0BaBZHQJI0T961LJ11fZQoaAZoCWgPQwj1L0llajCDwJSGlFKUaBVNLQFoFkdAkjY88PnSv3V9lChoBmgJaA9DCGnJ42mZ/YLAlIaUUpRoFU0tAWgWR0CSPGBg/keZdX2UKGgGaAloD0MINZnxtvJFh8CUhpRSlGgVTS0BaBZHQJI9ve3x4IN1fZQoaAZoCWgPQwg5J/bQXiqCwJSGlFKUaBVNLQFoFkdAkkFCJwbVBnV9lChoBmgJaA9DCI5AvK7/tIPAlIaUUpRoFU0tAWgWR0CSQqmz0HyFdX2UKGgGaAloD0MINQwfERNPhsCUhpRSlGgVTS0BaBZHQJJIHaXa8Hx1fZQoaAZoCWgPQwh3ZoLhfO+IwJSGlFKUaBVNLQFoFkdAkknJFPSDy3V9lChoBmgJaA9DCEX2QZbl7oXAlIaUUpRoFU0tAWgWR0CST6YhdMTOdX2UKGgGaAloD0MIR+hn6vX+gsCUhpRSlGgVTS0BaBZHQJJSHdFfAsV1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
BC-harcodemap-punish-stagnant/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7b8eb43ba701dc3d95dc28457be94efeec32cba17df799af9914dc88044743e3
3
  size 18973
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8917ce3d76be007b439435ddf5e546f6479eec32674a9cd3eae1eb8d9021b335
3
  size 18973
BC-harcodemap-punish-stagnant/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:407a49af64767f58c79e982f01202c1579daae7f4ba2c4d7613b56c6cdf9f3cc
3
  size 9295
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d2f50839f5e8582bf1eb9935f9d645a60fd3e408dbb4b74092e5d74d0b2ca87
3
  size 9295
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: RoombaAToB-harcodemap-punish-stagnant
17
  metrics:
18
  - type: mean_reward
19
- value: -2104.52 +/- 0.00
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: RoombaAToB-harcodemap-punish-stagnant
17
  metrics:
18
  - type: mean_reward
19
+ value: -104.52 +/- 0.00
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc26c2f11b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc26c2f1240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc26c2f12d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc26c2f1360>", "_build": "<function ActorCriticPolicy._build at 0x7fc26c2f13f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc26c2f1480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc26c2f1510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc26c2f15a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc26c2f1630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc26c2f16c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc26c2f1750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc26c2f17e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc26c2e2100>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 303104, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681935267510309066, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAPGS90LNaz+/AADIQrMhd0IAAMhCA1/6QfG45EEShhxC1dSFQgAAyELnxvRCcJ6TPwAAyELU3gJCO2UPQhPyYkKlZYdCAADIQgXarUL+2nRCE4/cQj97UL8AAMhCG+xzQgAAyEKH6HNCbMJdQpBugUIAAMhCAADIQibkykJnEAdADcqBQsN8lEIAAMhCAADIQgAAyEL05WJCY2RMQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYr1RK5wJkcCUhpRSlIwBbJRNLQGMAXSUR0CShQgpz90jdX2UKGgGaAloD0MIcLa5MR2IjcCUhpRSlGgVTS0BaBZHQJKFDAfuCwt1fZQoaAZoCWgPQwitpYC078eTwJSGlFKUaBVNLQFoFkdAkocPdVNpNHV9lChoBmgJaA9DCNJT5BBR9YTAlIaUUpRoFU0tAWgWR0CSjOf4h2W6dX2UKGgGaAloD0MIJXoZxfJrmcCUhpRSlGgVS35oFkdAkpO4QjD8+HV9lChoBmgJaA9DCJW6ZByzdpDAlIaUUpRoFU0tAWgWR0CSlVYl6Z6VdX2UKGgGaAloD0MIyJQPQdU/lMCUhpRSlGgVTS0BaBZHQJKVWGXXyy51fZQoaAZoCWgPQwhoklhS/seSwJSGlFKUaBVNLQFoFkdAkpcyNKh+OXV9lChoBmgJaA9DCLKFIAe1n5PAlIaUUpRoFU0tAWgWR0CSpE+wkgOjdX2UKGgGaAloD0MIxlIkX8lajMCUhpRSlGgVTS0BaBZHQJKmLwazeGh1fZQoaAZoCWgPQwgiVRSvEneRwJSGlFKUaBVNLQFoFkdAkqYy9h7VrnV9lChoBmgJaA9DCFciUP1jq4/AlIaUUpRoFU0tAWgWR0CSp2GiYb84dX2UKGgGaAloD0MIFK+ytglWj8CUhpRSlGgVTS0BaBZHQJKw0MmWt2d1fZQoaAZoCWgPQwjdPxaiU8+ewJSGlFKUaBVL8mgWR0CSsT6GQCCBdX2UKGgGaAloD0MI/aTap+PBi8CUhpRSlGgVTS0BaBZHQJKygbzbvgF1fZQoaAZoCWgPQwhbI4JxkOSTwJSGlFKUaBVNLQFoFkdAkrKEExIrfHV9lChoBmgJaA9DCKeVQiDn9pPAlIaUUpRoFU0tAWgWR0CSwOnezlcRdX2UKGgGaAloD0MIZW8p56uUkMCUhpRSlGgVTS0BaBZHQJLhmdPLxI91fZQoaAZoCWgPQwiZYaOsz22SwJSGlFKUaBVNLQFoFkdAkuI4fW+XaHV9lChoBmgJaA9DCE6XxcS2vZLAlIaUUpRoFU0tAWgWR0CS4jlf7aZhdX2UKGgGaAloD0MIjXqIRjcQjsCUhpRSlGgVTS0BaBZHQJLsmSFGoaV1fZQoaAZoCWgPQwheKjbm9eiRwJSGlFKUaBVNLQFoFkdAkuz72Dg62nV9lChoBmgJaA9DCLDHREoTmZLAlIaUUpRoFU0tAWgWR0CS7jZNfw7UdX2UKGgGaAloD0MIJa34hqIlkcCUhpRSlGgVTS0BaBZHQJLuOgPEsJ91fZQoaAZoCWgPQwjZzYx+VDGOwJSGlFKUaBVNLQFoFkdAkvs/a+N96XV9lChoBmgJaA9DCE4lA0AVwpHAlIaUUpRoFU0tAWgWR0CS+5PepGWldX2UKGgGaAloD0MIZOYCl4dmkMCUhpRSlGgVTS0BaBZHQJL8Z3os7Mh1fZQoaAZoCWgPQwjBG9KoYAaTwJSGlFKUaBVNLQFoFkdAkvxpcC5mRXV9lChoBmgJaA9DCG8Sg8DqnJLAlIaUUpRoFU0tAWgWR0CTCrz5oGpudX2UKGgGaAloD0MITaCIRUzQk8CUhpRSlGgVTS0BaBZHQJMLQgfU4Jh1fZQoaAZoCWgPQwi2MXbCK1qRwJSGlFKUaBVNLQFoFkdAkwylme18cHV9lChoBmgJaA9DCDDw3HtYUZLAlIaUUpRoFU0tAWgWR0CTDKlu3trsdX2UKGgGaAloD0MIGR2QhP2ijMCUhpRSlGgVTS0BaBZHQJMb69cry2B1fZQoaAZoCWgPQwgHzhlRSmeSwJSGlFKUaBVNLQFoFkdAkxwyosI3SHV9lChoBmgJaA9DCFU01v4erpHAlIaUUpRoFU0tAWgWR0CTHUY6XBxhdX2UKGgGaAloD0MIvMlv0Skuk8CUhpRSlGgVTS0BaBZHQJMdSSNfgJl1fZQoaAZoCWgPQwjfNehLX+CdwJSGlFKUaBVL7WgWR0CTJjhl18sudX2UKGgGaAloD0MIP1bw2xBVhMCUhpRSlGgVTS0BaBZHQJMn8qaw2VF1fZQoaAZoCWgPQwj7k/jcSZuTwJSGlFKUaBVNLQFoFkdAkyhbGFSKnHV9lChoBmgJaA9DCLH34osm45LAlIaUUpRoFU0tAWgWR0CTKZHLA57xdX2UKGgGaAloD0MIo1nZPtT8kcCUhpRSlGgVTS0BaBZHQJM1T3ztkWh1fZQoaAZoCWgPQwh5AmGnKKaRwJSGlFKUaBVNLQFoFkdAkzcHeWOZLXV9lChoBmgJaA9DCHnKarr+o4zAlIaUUpRoFU0tAWgWR0CTN3FMIu5CdX2UKGgGaAloD0MIVrjlI2k4kcCUhpRSlGgVTS0BaBZHQJM4pwQ176Z1fZQoaAZoCWgPQwiwVu2akByewJSGlFKUaBVL+mgWR0CTQt1SflIVdX2UKGgGaAloD0MIkdEBSWhqkMCUhpRSlGgVTS0BaBZHQJNsB6IFeOZ1fZQoaAZoCWgPQwjZl2w82EuQwJSGlFKUaBVNLQFoFkdAk2w7mp2lmHV9lChoBmgJaA9DCPQXesQ4RJLAlIaUUpRoFU0tAWgWR0CTbXAyEcsEdX2UKGgGaAloD0MIjIaMR7mLlcCUhpRSlGgVTS0BaBZHQJN3WpAD7qJ1fZQoaAZoCWgPQwgmxjL9UqSAwJSGlFKUaBVNLQFoFkdAk3sD8HfMwHV9lChoBmgJaA9DCKwfm+SndoXAlIaUUpRoFU0tAWgWR0CTe1AS39aVdX2UKGgGaAloD0MIogxVMVUpkMCUhpRSlGgVTS0BaBZHQJN8PgXMyJt1fZQoaAZoCWgPQwgqV3iX6wicwJSGlFKUaBVL6mgWR0CTgZf0VafSdX2UKGgGaAloD0MIbECEuLL5jsCUhpRSlGgVTS0BaBZHQJOI1s9B8hN1fZQoaAZoCWgPQwhm2v6VteKNwJSGlFKUaBVNLQFoFkdAk4k5XdTHbXV9lChoBmgJaA9DCOif4GLFuJHAlIaUUpRoFU0tAWgWR0CTimQJXyRTdX2UKGgGaAloD0MIMZi/QsZJjsCUhpRSlGgVTS0BaBZHQJOQvHn2ZiN1fZQoaAZoCWgPQwh9dVWgBn6SwJSGlFKUaBVNLQFoFkdAk5hgSamXPnV9lChoBmgJaA9DCNzUQPOJl5DAlIaUUpRoFU0tAWgWR0CTmM8E3bVSdX2UKGgGaAloD0MIbAa4INsPjMCUhpRSlGgVTS0BaBZHQJOaF/LDAJt1fZQoaAZoCWgPQwhpVrYPyX6RwJSGlFKUaBVNLQFoFkdAk6E0RJ2+wnV9lChoBmgJaA9DCHY1ecpay5PAlIaUUpRoFU0tAWgWR0CTqg4GD+R6dX2UKGgGaAloD0MIgjgPJ8BikcCUhpRSlGgVTS0BaBZHQJOqYtjCpFV1fZQoaAZoCWgPQwgNjLysSTWNwJSGlFKUaBVNLQFoFkdAk6u9r433pXV9lChoBmgJaA9DCGWoiqnUUZDAlIaUUpRoFU0tAWgWR0CTsfofSx7idX2UKGgGaAloD0MI46lHGpyyj8CUhpRSlGgVTS0BaBZHQJO6BiTdLxt1fZQoaAZoCWgPQwgxs89jVLiUwJSGlFKUaBVNLQFoFkdAk7psRYigTXV9lChoBmgJaA9DCN9wH7nFiJDAlIaUUpRoFU0tAWgWR0CTu7YywfQsdX2UKGgGaAloD0MIYAMixDWZk8CUhpRSlGgVTS0BaBZHQJPCNx//ech1fZQoaAZoCWgPQwjjqrLv2q2UwJSGlFKUaBVNLQFoFkdAk8sIQrc0tXV9lChoBmgJaA9DCPLOoQxFuZLAlIaUUpRoFU0tAWgWR0CTy37IDHOsdX2UKGgGaAloD0MIGmmpvB35ksCUhpRSlGgVTS0BaBZHQJPNITwlSjx1fZQoaAZoCWgPQwiBs5QshwuOwJSGlFKUaBVNLQFoFkdAk9JSfcvdunV9lChoBmgJaA9DCCP1nspZS5PAlIaUUpRoFU0tAWgWR0CT+8225QP7dX2UKGgGaAloD0MIpG/SNEiVkcCUhpRSlGgVTS0BaBZHQJP8GHgxagV1fZQoaAZoCWgPQwilEp7Q62OKwJSGlFKUaBVNLQFoFkdAk/z4fbKzRnV9lChoBmgJaA9DCGU3M/oRB4zAlIaUUpRoFU0tAWgWR0CUAnRtgrpadX2UKGgGaAloD0MIPfGcLfDMm8CUhpRSlGgVS/ZoFkdAlAbmOyVv/HV9lChoBmgJaA9DCB5OYDpNXZDAlIaUUpRoFU0tAWgWR0CUCITV2A5JdX2UKGgGaAloD0MInu3RG+6uj8CUhpRSlGgVTS0BaBZHQJQJW0LMLWt1fZQoaAZoCWgPQwgK2uTwyUeLwJSGlFKUaBVNLQFoFkdAlA3ElzEJjXV9lChoBmgJaA9DCNKrAUoz55DAlIaUUpRoFU0tAWgWR0CUE0nWJ79idX2UKGgGaAloD0MItTS3QniyjcCUhpRSlGgVTS0BaBZHQJQV5SBK+SN1fZQoaAZoCWgPQwjyW3SylDySwJSGlFKUaBVNLQFoFkdAlBfGG/N7jXV9lChoBmgJaA9DCNHrT+IjMpbAlIaUUpRoFU0tAWgWR0CUHotqHoHLdX2UKGgGaAloD0MIU8vW+gI0lMCUhpRSlGgVTS0BaBZHQJQkq22G7Bh1fZQoaAZoCWgPQwhpqifzP9mTwJSGlFKUaBVNLQFoFkdAlCdUlzEJjXV9lChoBmgJaA9DCNANTdnJf5TAlIaUUpRoFU0tAWgWR0CUKN/NJOFhdX2UKGgGaAloD0MI+pgPCNTck8CUhpRSlGgVTS0BaBZHQJQvYxIre691fZQoaAZoCWgPQwibAS7I1peRwJSGlFKUaBVNLQFoFkdAlDUT7yhBaHV9lChoBmgJaA9DCFA25QoPNpbAlIaUUpRoFU0tAWgWR0CUN8ZgG8mKdX2UKGgGaAloD0MIxLXawx5ykcCUhpRSlGgVTS0BaBZHQJQ5mRyOrAB1fZQoaAZoCWgPQwjFG5lHvheTwJSGlFKUaBVNLQFoFkdAlD//kvK2a3V9lChoBmgJaA9DCFJ95xdlopDAlIaUUpRoFU0tAWgWR0CURSvsqrimdX2UKGgGaAloD0MIPNo4Yo2skMCUhpRSlGgVTS0BaBZHQJRG6P0Zm7J1fZQoaAZoCWgPQwiny2JiI2CUwJSGlFKUaBVNLQFoFkdAlEfLgflp5HV9lChoBmgJaA9DCDlCBvL86pHAlIaUUpRoFU0tAWgWR0CUS+cW0qpcdX2UKGgGaAloD0MILJrOTnZFkMCUhpRSlGgVTS0BaBZHQJRRZuAI6bR1fZQoaAZoCWgPQwj6sx8pUrScwJSGlFKUaBVL/WgWR0CUUz0gr6LwdX2UKGgGaAloD0MIZAPpYkMRlMCUhpRSlGgVTS0BaBZHQJRUPcFhXsB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 370, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fda369ed1b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fda369ed240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fda369ed2d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fda369ed360>", "_build": "<function ActorCriticPolicy._build at 0x7fda369ed3f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fda369ed480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fda369ed510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fda369ed5a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fda369ed630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fda369ed6c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fda369ed750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fda369ed7e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fda369de700>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 303104, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681937284845865772, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACfA/EKtSd4+R3+BQpk+OUJriulBG8j7QcR8WELkCIZCAADIQjUop0LBY+1Cxpg3wE9kX0IAAMhCAADIQldMuUJ7M4FCAADIQsqnVUIXMJpCO0v3QrdgjD86HIVCn7A/QorLnEKLbFdCAADIQgAAyELLCsVCPqqHQixB1ULI5ifAOD2QQgAAyEIAAMhCHlhjQgAAyEIAAMhC1vchQqEiM0KUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX7THC4lWhMCUhpRSlIwBbJRNLQGMAXSUR0CQhdCFK02MdX2UKGgGaAloD0MI0uKMYa43gMCUhpRSlGgVTS0BaBZHQJCIrW6K+BZ1fZQoaAZoCWgPQwh1P6cgX1KCwJSGlFKUaBVNLQFoFkdAkIn4O+ZgHHV9lChoBmgJaA9DCIvCLorugJLAlIaUUpRoFUuyaBZHQJCNu8brC3x1fZQoaAZoCWgPQwgwLH++TYOHwJSGlFKUaBVNLQFoFkdAkI3WoNutOnV9lChoBmgJaA9DCJrQJLFEVYTAlIaUUpRoFU0tAWgWR0CQlm/pt78fdX2UKGgGaAloD0MIyCWOPNAIecCUhpRSlGgVTS0BaBZHQJCXcSZjQRh1fZQoaAZoCWgPQwhxV68igxKHwJSGlFKUaBVNLQFoFkdAkJrB7zCk43V9lChoBmgJaA9DCB8UlKJ1vIbAlIaUUpRoFU0tAWgWR0CQmudKdxyXdX2UKGgGaAloD0MICwith+/YhMCUhpRSlGgVTS0BaBZHQJCiXf779AJ1fZQoaAZoCWgPQwgi4uZUMvaGwJSGlFKUaBVNLQFoFkdAkKN7BbfP5nV9lChoBmgJaA9DCDdV98hGrYHAlIaUUpRoFU0tAWgWR0CQpmcYZVGTdX2UKGgGaAloD0MIh4px/iZ4gsCUhpRSlGgVTS0BaBZHQJCmfEvTPSl1fZQoaAZoCWgPQwh6OIHp1EyEwJSGlFKUaBVNLQFoFkdAkKzWYF7laXV9lChoBmgJaA9DCEJ23sYGJITAlIaUUpRoFU0tAWgWR0CQrmHTqjagdX2UKGgGaAloD0MIp7BSQcX3gMCUhpRSlGgVTS0BaBZHQJCy3o/zJ6p1fZQoaAZoCWgPQwgr3PKRVL6CwJSGlFKUaBVNLQFoFkdAkLMCxiXpn3V9lChoBmgJaA9DCHtntFW5GJLAlIaUUpRoFUt4aBZHQJC00kRjBmB1fZQoaAZoCWgPQwjTLxFvPQOBwJSGlFKUaBVNLQFoFkdAkOAGBFuvU3V9lChoBmgJaA9DCP+VlSbFVYLAlIaUUpRoFU0tAWgWR0CQ5DWpZOi4dX2UKGgGaAloD0MI0hitoypwhsCUhpRSlGgVTS0BaBZHQJDkS7qY7aJ1fZQoaAZoCWgPQwhV9l0RPDWEwJSGlFKUaBVNLQFoFkdAkOVbGBFuvXV9lChoBmgJaA9DCDroEg4dHYHAlIaUUpRoFU0tAWgWR0CQ7STX8O0+dX2UKGgGaAloD0MI+nspPAjkgMCUhpRSlGgVTS0BaBZHQJDzGVZ9uxd1fZQoaAZoCWgPQwixprIorPaDwJSGlFKUaBVNLQFoFkdAkPNTRx95QnV9lChoBmgJaA9DCAX52cj1koTAlIaUUpRoFU0tAWgWR0CQ9Ux6v7m/dX2UKGgGaAloD0MIn+OjxXnghcCUhpRSlGgVTS0BaBZHQJD92UliSaF1fZQoaAZoCWgPQwg5nPnVnEKAwJSGlFKUaBVNLQFoFkdAkQPmO+7DmHV9lChoBmgJaA9DCIW1MXaCYnnAlIaUUpRoFU0tAWgWR0CRBCVPN3W4dX2UKGgGaAloD0MIB++rcgGtg8CUhpRSlGgVTS0BaBZHQJEGEb2lEZ11fZQoaAZoCWgPQwjAkqtY3EmBwJSGlFKUaBVNLQFoFkdAkQ4XY6GQCHV9lChoBmgJaA9DCH3ogvrWn37AlIaUUpRoFU0tAWgWR0CRE2YJE6T4dX2UKGgGaAloD0MI3GJ+bgitg8CUhpRSlGgVTS0BaBZHQJETiQyRB/t1fZQoaAZoCWgPQwiCcAUUyreCwJSGlFKUaBVNLQFoFkdAkRUi/9Hc13V9lChoBmgJaA9DCFis4SIXyoXAlIaUUpRoFU0tAWgWR0CRG7qZtvXLdX2UKGgGaAloD0MIyeTUzrDfg8CUhpRSlGgVTS0BaBZHQJEgrqB3A211fZQoaAZoCWgPQwgqq+l6ogqHwJSGlFKUaBVNLQFoFkdAkSDqoddVvXV9lChoBmgJaA9DCIRLx5xHQYPAlIaUUpRoFU0tAWgWR0CRIrcj7hvSdX2UKGgGaAloD0MI4jrGFfdihcCUhpRSlGgVTS0BaBZHQJErPp1RtP51fZQoaAZoCWgPQwhMqODwAjB7wJSGlFKUaBVNLQFoFkdAkTGNF8XvY3V9lChoBmgJaA9DCC/APjp1P4TAlIaUUpRoFU0tAWgWR0CRMa8IAwPAdX2UKGgGaAloD0MI83SuKCUngMCUhpRSlGgVTS0BaBZHQJEzjNpudf91fZQoaAZoCWgPQwgFUIwsObCCwJSGlFKUaBVNLQFoFkdAkTysfvF3p3V9lChoBmgJaA9DCMVTjzR4tnzAlIaUUpRoFU0tAWgWR0CRRBgvlEJCdX2UKGgGaAloD0MIE2OZfkkLgsCUhpRSlGgVTS0BaBZHQJFERmkFfRh1fZQoaAZoCWgPQwg3GsBboNx/wJSGlFKUaBVNLQFoFkdAkUYQskIHDHV9lChoBmgJaA9DCLGlR1P9eIjAlIaUUpRoFU0tAWgWR0CRbyornTy8dX2UKGgGaAloD0MIsp3vp2YehMCUhpRSlGgVTS0BaBZHQJF1WHi3ocJ1fZQoaAZoCWgPQwjVQsnkdA6CwJSGlFKUaBVNLQFoFkdAkXV9l/Yra3V9lChoBmgJaA9DCGmqJ/OvyoTAlIaUUpRoFU0tAWgWR0CRdyiHIp6QdX2UKGgGaAloD0MIyhgfZi/0fsCUhpRSlGgVTS0BaBZHQJF/koBq9Gt1fZQoaAZoCWgPQwj1aKonMxCEwJSGlFKUaBVNLQFoFkdAkYYs9B8hLXV9lChoBmgJaA9DCIW0xqCTqoDAlIaUUpRoFU0tAWgWR0CRhm2pQ1rJdX2UKGgGaAloD0MIxqNUwtNHh8CUhpRSlGgVTS0BaBZHQJGIZKraM751fZQoaAZoCWgPQwgFjC5vniiVwJSGlFKUaBVL+WgWR0CRjW9Wp6yCdX2UKGgGaAloD0MI7kJznSb8gsCUhpRSlGgVTS0BaBZHQJGUgc94eLh1fZQoaAZoCWgPQwh1kNeDSWWFwJSGlFKUaBVNLQFoFkdAkZSf6fra/XV9lChoBmgJaA9DCE+vlGVIGYbAlIaUUpRoFU0tAWgWR0CRlnGGEf1ZdX2UKGgGaAloD0MIyjMvhx09iMCUhpRSlGgVTS0BaBZHQJGaNazNUwV1fZQoaAZoCWgPQwgbLQd66I6BwJSGlFKUaBVNLQFoFkdAkaM3hn8KonV9lChoBmgJaA9DCHwqpz2FOYLAlIaUUpRoFU0tAWgWR0CRo136Q/5ddX2UKGgGaAloD0MIVwqBXEIYg8CUhpRSlGgVTS0BaBZHQJGk8J4SpR51fZQoaAZoCWgPQwjEsplDUkR7wJSGlFKUaBVNLQFoFkdAkap51q33H3V9lChoBmgJaA9DCAjpKXLor4LAlIaUUpRoFU0tAWgWR0CRtABZ6lchdX2UKGgGaAloD0MI2SWqt8bwgMCUhpRSlGgVTS0BaBZHQJG0JuAI6bR1fZQoaAZoCWgPQwhj78UXLSqAwJSGlFKUaBVNLQFoFkdAkbZoZZSvT3V9lChoBmgJaA9DCORNfotOdoPAlIaUUpRoFU0tAWgWR0CRvGwwCbMHdX2UKGgGaAloD0MIvK5fsPtVhcCUhpRSlGgVTS0BaBZHQJHFG28Zk091fZQoaAZoCWgPQwhOYhBYWTyDwJSGlFKUaBVNLQFoFkdAkcVTYywfQ3V9lChoBmgJaA9DCHu/0Y77KoDAlIaUUpRoFU0tAWgWR0CRxugYxcmjdX2UKGgGaAloD0MIhnMNM/TqgMCUhpRSlGgVTS0BaBZHQJHLHf779AJ1fZQoaAZoCWgPQwifxyjPPOmGwJSGlFKUaBVNLQFoFkdAkdPTmGM4tHV9lChoBmgJaA9DCP9cNGT8J3jAlIaUUpRoFU0tAWgWR0CR0/0Bfa6CdX2UKGgGaAloD0MIhSUeUBb4gsCUhpRSlGgVTS0BaBZHQJHV+yY5T611fZQoaAZoCWgPQwi8saAwSBmDwJSGlFKUaBVNLQFoFkdAkf4onjQzDXV9lChoBmgJaA9DCByz7EmgmYLAlIaUUpRoFU0tAWgWR0CSBA2U0Nz9dX2UKGgGaAloD0MIEM6njjVIhcCUhpRSlGgVTS0BaBZHQJIENwxWT5h1fZQoaAZoCWgPQwjVJeMYSaaCwJSGlFKUaBVNLQFoFkdAkgWhZha1TnV9lChoBmgJaA9DCBObj2vDZn/AlIaUUpRoFU0tAWgWR0CSCMPH1e0HdX2UKGgGaAloD0MIoWr0asDNhMCUhpRSlGgVTS0BaBZHQJIQOcBltj11fZQoaAZoCWgPQwjyJOmaSSqDwJSGlFKUaBVNLQFoFkdAkhBfcrRSg3V9lChoBmgJaA9DCGgibHiad4fAlIaUUpRoFU0tAWgWR0CSEhtBv73xdX2UKGgGaAloD0MIILWJk5utgsCUhpRSlGgVTS0BaBZHQJIXEzch1T11fZQoaAZoCWgPQwjo9SfxuXiFwJSGlFKUaBVNLQFoFkdAkh9DP0I1L3V9lChoBmgJaA9DCPxVgO82EIPAlIaUUpRoFU0tAWgWR0CSH17yhBZ7dX2UKGgGaAloD0MIP8bctaRqhMCUhpRSlGgVTS0BaBZHQJIhFNQCSzR1fZQoaAZoCWgPQwjds67RkoeAwJSGlFKUaBVNLQFoFkdAkiY7lzU7S3V9lChoBmgJaA9DCI+NQLx+XpLAlIaUUpRoFUuuaBZHQJIoAlC1JDp1fZQoaAZoCWgPQwjFO8CTNnKDwJSGlFKUaBVNLQFoFkdAki2b5uZTh3V9lChoBmgJaA9DCA9eu7Th44LAlIaUUpRoFU0tAWgWR0CSL1Mbm2b5dX2UKGgGaAloD0MI9WbUfNWUhMCUhpRSlGgVTS0BaBZHQJI0T961LJ11fZQoaAZoCWgPQwj1L0llajCDwJSGlFKUaBVNLQFoFkdAkjY88PnSv3V9lChoBmgJaA9DCGnJ42mZ/YLAlIaUUpRoFU0tAWgWR0CSPGBg/keZdX2UKGgGaAloD0MINZnxtvJFh8CUhpRSlGgVTS0BaBZHQJI9ve3x4IN1fZQoaAZoCWgPQwg5J/bQXiqCwJSGlFKUaBVNLQFoFkdAkkFCJwbVBnV9lChoBmgJaA9DCI5AvK7/tIPAlIaUUpRoFU0tAWgWR0CSQqmz0HyFdX2UKGgGaAloD0MINQwfERNPhsCUhpRSlGgVTS0BaBZHQJJIHaXa8Hx1fZQoaAZoCWgPQwh3ZoLhfO+IwJSGlFKUaBVNLQFoFkdAkknJFPSDy3V9lChoBmgJaA9DCEX2QZbl7oXAlIaUUpRoFU0tAWgWR0CST6YhdMTOdX2UKGgGaAloD0MIR+hn6vX+gsCUhpRSlGgVTS0BaBZHQJJSHdFfAsV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 370, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -2104.516794509888, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T13:36:35.118397"}
 
1
+ {"mean_reward": -104.51679450988794, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T14:08:05.404553"}