ctranslate2-4you commited on
Commit
e700589
1 Parent(s): 3ea6af7

Upload 13 files

Browse files
README.md ADDED
@@ -0,0 +1,851 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ library_name: transformers
6
+ tags:
7
+ - audio
8
+ - automatic-speech-recognition
9
+ - transformers.js
10
+ widget:
11
+ - example_title: LibriSpeech sample 1
12
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
13
+ - example_title: LibriSpeech sample 2
14
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
15
+ pipeline_tag: automatic-speech-recognition
16
+ ---
17
+
18
+ # Distil-Whisper: distil-large-v3
19
+
20
+ Distil-Whisper was proposed in the paper [Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430).
21
+
22
+ This is the third and final installment of the Distil-Whisper English series. It the knowledge distilled version of
23
+ OpenAI's [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3), the latest and most performant Whisper model
24
+ to date.
25
+
26
+ Compared to previous Distil-Whisper models, the distillation procedure for distil-large-v3 has been adapted to give
27
+ **superior long-form transcription accuracy** with OpenAI's **sequential long-form algorithm**.
28
+
29
+ The result is a distilled model that performs to within 1% WER of large-v3 on long-form audio using both the sequential
30
+ and chunked algorithms, and outperforms distil-large-v2 by 4.8% using the sequential algorithm. The model is also faster
31
+ than previous Distil-Whisper models: **6.3x faster than large-v3**, and 1.1x faster than distil-large-v2.
32
+
33
+ | Model | Params / M | Rel. Latency | Short-Form | Sequential Long-Form | Chunked Long-Form |
34
+ |------------------------------------------------------------------------------|------------|--------------|------------|----------------------|-------------------|
35
+ | [large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 | 8.4 | 10.0 | 11.0 |
36
+ | **[distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)** | **756** | **6.3** | **9.7** | **10.8** | **10.9** |
37
+ | [distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) | 756 | 5.8 | 10.1 | 15.6 | 11.6 |
38
+
39
+ Since the sequential algorithm is the "de-facto" transcription algorithm across the most popular Whisper libraries
40
+ (Whisper cpp, Faster-Whisper, OpenAI Whisper), this distilled model is designed to be compatible with these libraries.
41
+ You can expect significant performance gains by switching from previous Distil-Whisper checkpoints to distil-large-v3
42
+ when using these libraries. For convenience, the weights for the most popular libraries are already converted,
43
+ with instructions for getting started below.
44
+
45
+ ## Table of Contents
46
+
47
+ 1. [Transformers Usage](#transformers-usage)
48
+ * [Short-Form Transcription](#short-form-transcription)
49
+ * [Sequential Long-Form](#sequential-long-form)
50
+ * [Chunked Long-Form](#chunked-long-form)
51
+ * [Speculative Decoding](#speculative-decoding)
52
+ * [Additional Speed and Memory Improvements](#additional-speed--memory-improvements)
53
+ 2. [Library Integrations](#library-integrations)
54
+ * [Whisper cpp](#whispercpp)
55
+ * [Faster Whisper](#faster-whisper)
56
+ * [OpenAI Whisper](#openai-whisper)
57
+ * [Transformers.js](#transformersjs)
58
+ * [Candle](#candle)
59
+ 3. [Model Details](#model-details)
60
+ 4. [License](#license)
61
+
62
+ ## Transformers Usage
63
+
64
+ distil-large-v3 is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first
65
+ install the latest version of Transformers. For this example, we'll also install 🤗 Datasets to load a toy audio dataset
66
+ from the Hugging Face Hub:
67
+
68
+ ```bash
69
+ pip install --upgrade pip
70
+ pip install --upgrade transformers accelerate datasets[audio]
71
+ ```
72
+
73
+ ### Short-Form Transcription
74
+
75
+ The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
76
+ class to transcribe short-form audio files (< 30-seconds) as follows:
77
+
78
+ ```python
79
+ import torch
80
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
81
+ from datasets import load_dataset
82
+
83
+
84
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
85
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
86
+
87
+ model_id = "distil-whisper/distil-large-v3"
88
+
89
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
90
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
91
+ )
92
+ model.to(device)
93
+
94
+ processor = AutoProcessor.from_pretrained(model_id)
95
+
96
+ pipe = pipeline(
97
+ "automatic-speech-recognition",
98
+ model=model,
99
+ tokenizer=processor.tokenizer,
100
+ feature_extractor=processor.feature_extractor,
101
+ max_new_tokens=128,
102
+ torch_dtype=torch_dtype,
103
+ device=device,
104
+ )
105
+
106
+ dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
107
+ sample = dataset[0]["audio"]
108
+
109
+ result = pipe(sample)
110
+ print(result["text"])
111
+ ```
112
+
113
+ To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
114
+ ```diff
115
+ - result = pipe(sample)
116
+ + result = pipe("audio.mp3")
117
+ ```
118
+
119
+ For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output:
120
+ ```python
121
+ result = pipe(sample, return_timestamps=True)
122
+ print(result["chunks"])
123
+ ```
124
+
125
+ <details>
126
+
127
+ <summary> For more control over the generation parameters, use the model + processor API directly: </summary>
128
+
129
+ Ad-hoc generation arguments can be passed to `model.generate`, including `num_beams` for beam-search, `return_timestamps`
130
+ for segment-level timestamps, and `prompt_ids` for prompting. See the [docstrings](https://huggingface.co/docs/transformers/en/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate)
131
+ for more details.
132
+
133
+ ```python
134
+ import torch
135
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
136
+ from datasets import Audio, load_dataset
137
+
138
+
139
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
140
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
141
+
142
+ model_id = "distil-whisper/distil-large-v3"
143
+
144
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
145
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
146
+ )
147
+ model.to(device)
148
+
149
+ processor = AutoProcessor.from_pretrained(model_id)
150
+
151
+ dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
152
+ dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
153
+ sample = dataset[0]["audio"]
154
+
155
+ input_features = processor(
156
+ sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
157
+ ).input_features
158
+
159
+ input_features = input_features.to(device, dtype=torch_dtype)
160
+
161
+ gen_kwargs = {
162
+ "max_new_tokens": 128,
163
+ "num_beams": 1,
164
+ "return_timestamps": False,
165
+ }
166
+
167
+ pred_ids = model.generate(input_features, **gen_kwargs)
168
+ pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=gen_kwargs["return_timestamps"])
169
+
170
+ print(pred_text)
171
+ ```
172
+
173
+ </details>
174
+
175
+ ### Sequential Long-Form
176
+
177
+ Unlike previous Distil-Whisper releases, distil-large-v3 is specifically designed to be compatible with OpenAI's sequential
178
+ long-form transcription algorithm. This algorithm uses a sliding window for buffered inference of long audio files (> 30-seconds),
179
+ and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
180
+
181
+ The sequential long-form algorithm should be used in either of the following scenarios:
182
+ 1. Transcription accuracy is the most important factor, and latency is less of a consideration
183
+ 2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
184
+
185
+ If you are transcribing single long audio files and latency is the most important factor, you should use the chunked algorithm
186
+ described [below](#chunked-long-form). For a detailed explanation of the different algorithms, refer to Sections 5 of
187
+ the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf).
188
+
189
+ The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
190
+ class can be used to transcribe long audio files with the sequential algorithm as follows:
191
+
192
+ ```python
193
+ import torch
194
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
195
+ from datasets import load_dataset
196
+
197
+
198
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
199
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
200
+
201
+ model_id = "distil-whisper/distil-large-v3"
202
+
203
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
204
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
205
+ )
206
+ model.to(device)
207
+
208
+ processor = AutoProcessor.from_pretrained(model_id)
209
+
210
+ pipe = pipeline(
211
+ "automatic-speech-recognition",
212
+ model=model,
213
+ tokenizer=processor.tokenizer,
214
+ feature_extractor=processor.feature_extractor,
215
+ max_new_tokens=128,
216
+ torch_dtype=torch_dtype,
217
+ device=device,
218
+ )
219
+
220
+ dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
221
+ sample = dataset[0]["audio"]
222
+
223
+ result = pipe(sample)
224
+ print(result["text"])
225
+ ```
226
+
227
+ <details>
228
+
229
+ <summary> For more control over the generation parameters, use the model + processor API directly: </summary>
230
+
231
+ ```python
232
+ import torch
233
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
234
+ from datasets import Audio, load_dataset
235
+
236
+
237
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
238
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
239
+
240
+ model_id = "distil-whisper/distil-large-v3"
241
+
242
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
243
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
244
+ )
245
+ model.to(device)
246
+
247
+ processor = AutoProcessor.from_pretrained(model_id)
248
+
249
+ dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
250
+ dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
251
+ sample = dataset[0]["audio"]
252
+
253
+ inputs = processor(
254
+ sample["array"],
255
+ sampling_rate=sample["sampling_rate"],
256
+ return_tensors="pt",
257
+ truncation=False,
258
+ padding="longest",
259
+ return_attention_mask=True,
260
+ )
261
+ inputs = inputs.to(device, dtype=torch_dtype)
262
+
263
+ gen_kwargs = {
264
+ "max_new_tokens": 448,
265
+ "num_beams": 1,
266
+ "condition_on_prev_tokens": False,
267
+ "compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
268
+ "temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
269
+ "logprob_threshold": -1.0,
270
+ "no_speech_threshold": 0.6,
271
+ "return_timestamps": True,
272
+ }
273
+
274
+ pred_ids = model.generate(**i nputs, **gen_kwargs)
275
+ pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)
276
+
277
+ print(pred_text)
278
+ ```
279
+
280
+ </details>
281
+
282
+ ### Chunked Long-Form
283
+
284
+ distil-large-v3 remains compatible with the Transformers chunked long-form algorithm. This algorithm should be used when
285
+ a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
286
+ the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the
287
+ [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).
288
+
289
+ To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3, a chunk length of 25-seconds
290
+ is optimal. To activate batching over long audio files, pass the argument `batch_size`:
291
+
292
+ ```python
293
+ import torch
294
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
295
+ from datasets import load_dataset
296
+
297
+
298
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
299
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
300
+
301
+ model_id = "distil-whisper/distil-large-v3"
302
+
303
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
304
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
305
+ )
306
+ model.to(device)
307
+
308
+ processor = AutoProcessor.from_pretrained(model_id)
309
+
310
+ pipe = pipeline(
311
+ "automatic-speech-recognition",
312
+ model=model,
313
+ tokenizer=processor.tokenizer,
314
+ feature_extractor=processor.feature_extractor,
315
+ max_new_tokens=128,
316
+ chunk_length_s=25,
317
+ batch_size=16,
318
+ torch_dtype=torch_dtype,
319
+ device=device,
320
+ )
321
+
322
+ dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
323
+ sample = dataset[0]["audio"]
324
+
325
+ result = pipe(sample)
326
+ print(result["text"])
327
+ ```
328
+
329
+ ### Speculative Decoding
330
+
331
+ distil-large-v3 is the first Distil-Whisper model that can be used as an assistant to Whisper large-v3 for [speculative decoding](https://huggingface.co/blog/whisper-speculative-decoding).
332
+ Speculative decoding mathematically ensures that exactly the same outputs as Whisper are obtained, while being 2 times faster.
333
+ This makes it the perfect drop-in replacement for existing Whisper pipelines, since the same outputs are guaranteed.
334
+
335
+ In the following code-snippet, we load the assistant Distil-Whisper model standalone to the main Whisper pipeline. We then
336
+ specify it as the "assistant model" for generation:
337
+
338
+ ```python
339
+ from transformers import pipeline, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq, AutoProcessor
340
+ import torch
341
+ from datasets import load_dataset
342
+
343
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
344
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
345
+
346
+ assistant_model_id = "distil-whisper/distil-large-v3"
347
+
348
+ assistant_model = AutoModelForCausalLM.from_pretrained(
349
+ assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
350
+ )
351
+ assistant_model.to(device)
352
+
353
+ model_id = "openai/whisper-large-v3"
354
+
355
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
356
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
357
+ )
358
+ model.to(device)
359
+
360
+ processor = AutoProcessor.from_pretrained(model_id)
361
+
362
+ pipe = pipeline(
363
+ "automatic-speech-recognition",
364
+ model=model,
365
+ tokenizer=processor.tokenizer,
366
+ feature_extractor=processor.feature_extractor,
367
+ max_new_tokens=128,
368
+ generate_kwargs={"assistant_model": assistant_model},
369
+ torch_dtype=torch_dtype,
370
+ device=device,
371
+ )
372
+
373
+ dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
374
+ sample = dataset[0]["audio"]
375
+
376
+ result = pipe(sample)
377
+ print(result["text"])
378
+ ```
379
+
380
+ For more details on speculative decoding, refer to the blog post [Speculative Decoding for 2x Faster Whisper Inference](https://huggingface.co/blog/whisper-speculative-decoding).
381
+
382
+ ### Additional Speed & Memory Improvements
383
+
384
+ You can apply additional speed and memory improvements to Distil-Whisper to further reduce the inference speed and VRAM
385
+ requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a
386
+ more efficient flash attention version.
387
+
388
+ #### Flash Attention 2
389
+
390
+ We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
391
+ if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
392
+
393
+ ```
394
+ pip install flash-attn --no-build-isolation
395
+ ```
396
+
397
+ Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
398
+
399
+ ```diff
400
+ - model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
401
+ + model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2")
402
+ ```
403
+
404
+ #### Torch Scale-Product-Attention (SDPA)
405
+
406
+ If your GPU does not support Flash Attention, we recommend making use of PyTorch [scaled dot-product attention (SDPA)](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html).
407
+ This attention implementation is activated **by default** for PyTorch versions 2.1.1 or greater. To check
408
+ whether you have a compatible PyTorch version, run the following Python code snippet:
409
+
410
+ ```python
411
+ from transformers.utils import is_torch_sdpa_available
412
+
413
+ print(is_torch_sdpa_available())
414
+ ```
415
+
416
+ If the above returns `True`, you have a valid version of PyTorch installed and SDPA is activated by default. If it
417
+ returns `False`, you need to upgrade your PyTorch version according to the [official instructions](https://pytorch.org/get-started/locally/)
418
+
419
+ Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying
420
+ `attn_implementation="sdpa"` as follows:
421
+
422
+ ```diff
423
+ - model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
424
+ + model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
425
+ ```
426
+
427
+ #### Torch compile
428
+
429
+ Coming soon...
430
+
431
+ #### 4-bit and 8-bit Inference
432
+
433
+ Coming soon...
434
+
435
+ ## Library Integrations
436
+
437
+ ### Whisper.cpp
438
+
439
+ Distil-Whisper can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original
440
+ sequential long-form transcription algorithm. In a provisional benchmark on Mac M1, distil-large-v3 is over 5x faster
441
+ than Whisper large-v3, while performing to within 0.8% WER over long-form audio.
442
+
443
+ Steps for getting started:
444
+
445
+ 1. Clone the Whisper.cpp repository:
446
+ ```
447
+ git clone https://github.com/ggerganov/whisper.cpp.git
448
+ cd whisper.cpp
449
+ ```
450
+ 2. Install the Hugging Face Hub Python package:
451
+ ```bash
452
+ pip install --upgrade huggingface_hub
453
+ ```
454
+ And download the GGML weights for distil-large-v3 using the following Python snippet:
455
+
456
+ ```python
457
+ from huggingface_hub import hf_hub_download
458
+
459
+ hf_hub_download(repo_id='distil-whisper/distil-large-v3-ggml', filename='ggml-distil-large-v3.bin', local_dir='./models')
460
+ ```
461
+
462
+ Note that if you do not have a Python environment set-up, you can also download the weights directly with `wget`:
463
+
464
+ ```bash
465
+ wget https://huggingface.co/distil-whisper/distil-large-v3-ggml/resolve/main/ggml-distil-large-v3.bin -P ./models
466
+ ```
467
+
468
+ 3. Run inference using the provided sample audio:
469
+
470
+ ```bash
471
+ make -j && ./main -m models/ggml-distil-large-v3.bin -f samples/jfk.wav
472
+ ```
473
+
474
+ ### Faster-Whisper
475
+
476
+ Faster-Whisper is a reimplementation of Whisper using [CTranslate2](https://github.com/OpenNMT/CTranslate2/), a fast
477
+ inference engine for Transformer models.
478
+
479
+ First, install the Faster-Whisper package according to the [official instructions](https://github.com/SYSTRAN/faster-whisper#installation).
480
+ For this example, we'll also install 🤗 Datasets to load a toy audio dataset from the Hugging Face Hub:
481
+
482
+ ```bash
483
+ pip install --upgrade pip
484
+ pip install --upgrade git+https://github.com/SYSTRAN/faster-whisper datasets[audio]
485
+ ```
486
+
487
+ The following code snippet loads the distil-large-v3 model and runs inference on an example file from the LibriSpeech ASR
488
+ dataset:
489
+
490
+ ```python
491
+ import torch
492
+ from faster_whisper import WhisperModel
493
+ from datasets import load_dataset
494
+
495
+ # define our torch configuration
496
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
497
+ compute_type = "float16" if torch.cuda.is_available() else "float32"
498
+
499
+ # load model on GPU if available, else cpu
500
+ model = WhisperModel("distil-large-v3", device=device, compute_type=compute_type)
501
+
502
+ # load toy dataset for example
503
+ dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
504
+ sample = dataset[1]["audio"]["path"]
505
+
506
+ segments, info = model.transcribe(sample, beam_size=1)
507
+
508
+ for segment in segments:
509
+ print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
510
+ ```
511
+
512
+ To transcribe a local audio file, simply pass the path to the audio file as the `audio` argument to transcribe:
513
+
514
+ ```python
515
+ segments, info = model.transcribe("audio.mp3", beam_size=1)
516
+ ```
517
+
518
+ ### OpenAI Whisper
519
+
520
+ To use the model in the original Whisper format, first ensure you have the [`openai-whisper`](https://pypi.org/project/openai-whisper/) package installed.
521
+ For this example, we'll also install 🤗 Datasets to load a toy audio dataset from the Hugging Face Hub:
522
+
523
+ ```bash
524
+ pip install --upgrade pip
525
+ pip install --upgrade openai-whisper datasets[audio]
526
+ ```
527
+
528
+ The following code-snippet demonstrates how to transcribe a sample file from the LibriSpeech dataset loaded using
529
+ 🤗 Datasets:
530
+
531
+ ```python
532
+ from huggingface_hub import hf_hub_download
533
+ from datasets import load_dataset
534
+ from whisper import load_model, transcribe
535
+
536
+ model_path = hf_hub_download(repo_id="distil-whisper/distil-large-v3-openai", filename="model.bin")
537
+ model = load_model(model_path)
538
+
539
+ dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
540
+ sample = dataset[0]["audio"]["path"]
541
+
542
+ pred_out = transcribe(model, audio=sample, language="en")
543
+ print(pred_out["text"])
544
+ ```
545
+
546
+ Note that the model weights will be downloaded and saved to your cache the first time you run the example. Subsequently,
547
+ you can re-use the same example, and the weights will be loaded directly from your cache without having to download them
548
+ again.
549
+
550
+ To transcribe a local audio file, simply pass the path to the audio file as the `audio` argument to transcribe:
551
+
552
+ ```python
553
+ pred_out = transcribe(model, audio=sample, language="en")
554
+ ```
555
+
556
+ The Distil-Whisper model can also be used with the OpenAI Whisper CLI. Refer to the [following instructions](https://huggingface.co/distil-whisper/distil-large-v3-openai#cli-usage)
557
+ for details.
558
+
559
+ ### Transformers.js
560
+
561
+ Distil-Whisper can be run completely in your web browser with [Transformers.js](http://github.com/xenova/transformers.js):
562
+
563
+ 1. Install Transformers.js from [NPM](https://www.npmjs.com/package/@xenova/transformers):
564
+
565
+ ```bash
566
+ npm i @xenova/transformers
567
+ ```
568
+
569
+ 2. Import the library and perform inference with the pipeline API.
570
+
571
+ ```js
572
+ import { pipeline } from '@xenova/transformers';
573
+
574
+ const transcriber = await pipeline('automatic-speech-recognition', 'distil-whisper/distil-large-v3');
575
+
576
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
577
+ const output = await transcriber(url);
578
+ // { text: " And so, my fellow Americans, ask not what your country can do for you. Ask what you can do for your country." }
579
+ ```
580
+
581
+ Check out the online [Distil-Whisper Web Demo](https://huggingface.co/spaces/Xenova/distil-whisper-web) to try it out yourself.
582
+ As you'll see, it runs locally in your browser: no server required!
583
+
584
+ Refer to the Transformers.js [docs](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.AutomaticSpeechRecognitionPipeline)
585
+ for further information.
586
+
587
+ ### Candle
588
+
589
+ Through an integration with Hugging Face [Candle](https://github.com/huggingface/candle/tree/main) 🕯️, Distil-Whisper is
590
+ available in the Rust library 🦀
591
+
592
+ Benefit from:
593
+ * Optimised CPU backend with optional MKL support for Linux x86 and Accelerate for Macs
594
+ * Metal support for efficiently running on Macs
595
+ * CUDA backend for efficiently running on GPUs, multiple GPU distribution via NCCL
596
+ * WASM support: run Distil-Whisper in a browser
597
+
598
+ Steps for getting started:
599
+ 1. Install [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) as explained [here](https://huggingface.github.io/candle/guide/installation.html)
600
+ 2. Clone the `candle` repository locally:
601
+ ```
602
+ git clone https://github.com/huggingface/candle.git
603
+ ```
604
+ 3. Enter the example directory for [Whisper](https://github.com/huggingface/candle/tree/main/candle-examples/examples/whisper):
605
+ ```
606
+ cd candle/candle-examples/examples/whisper
607
+ ```
608
+ 4. Run an example:
609
+ ```
610
+ cargo run --example whisper --release --features symphonia -- --model distil-large-v3
611
+ ```
612
+ 5. To specify your own audio file, add the `--input` flag:
613
+ ```
614
+ cargo run --example whisper --release --features symphonia -- --model distil-large-v3 --input audio.wav
615
+ ```
616
+
617
+ **Tip:** for compiling using Apple Metal, specify the `metal` feature when you run the example:
618
+ ```
619
+ cargo run --example whisper --release --features="symphonia,metal" -- --model distil-large-v3
620
+ ```
621
+
622
+ Note that if you encounter the error:
623
+ ```
624
+ error: target `whisper` in package `candle-examples` requires the features: `symphonia`
625
+ Consider enabling them by passing, e.g., `--features="symphonia"`
626
+ ```
627
+ You should clean your `cargo` installation:
628
+ ```
629
+ cargo clean
630
+ ```
631
+ And subsequently recompile:
632
+ ```
633
+ cargo run --example whisper --release --features symphonia -- --model distil-large-v3
634
+ ```
635
+
636
+ ## Model Details
637
+
638
+ Distil-Whisper inherits the encoder-decoder architecture from Whisper. The encoder maps a sequence of speech vector
639
+ inputs to a sequence of hidden-state vectors. The decoder auto-regressively predicts text tokens, conditional on all
640
+ previous tokens and the encoder hidden-states. Consequently, the encoder is only run forward once, whereas the decoder
641
+ is run as many times as the number of tokens generated. In practice, this means the decoder accounts for over 90% of
642
+ total inference time. Thus, to optimise for latency, the focus is on minimising the inference time of the decoder.
643
+
644
+ To distill the Whisper model, we reduce the number of decoder layers while keeping the encoder fixed.
645
+ The encoder (shown in green) is entirely copied from the teacher to the student and frozen during training.
646
+ The student's decoder consists of a subset of the teacher decoder layers, which are intialised from maximally spaced layers.
647
+ The model is then trained on a weighted sum of the KL divergence and pseudo-label loss terms.
648
+
649
+ <p align="center">
650
+ <img src="https://huggingface.co/datasets/distil-whisper/figures/resolve/main/architecture.png?raw=true" width="600"/>
651
+ </p>
652
+
653
+ ## Differences with distil-large-v2
654
+
655
+ Compared to previous version of Distil-Whisper, distil-large-v3 is specifically designed to target the OpenAI sequential
656
+ long-form transcription algorithm. There are no architectural differences compared to distil-large-v2, other than the fact
657
+ the model layers are intialised from the latest large-v3 model rather than the older large-v2 one. The differences lie
658
+ in the way the model was trained.
659
+
660
+ Previous Distil-Whisper models were trained on a mean input length of 7-seconds, whereas the original Whisper models were
661
+ pre-trained on 30-second inputs. During distillation, we shift the distribution of the model weights to the distribution
662
+ of our training data. If our training data contains shorter utterances (e.g. on average 7-seconds audio instead of 30-seconds),
663
+ then the predicted distribution shifts to this shorter context length. At inference time, the optimal context window for
664
+ distil-large-v2 was an interpolation of these two values: 15-seconds. Beyond this time, the predictions for the distil-large-v2
665
+ model were largely inaccurate, particularly for the timestamp predictions. However, the sequential long-form algorithm
666
+ uses 30-second sliding windows for inference, with the window shifted according to the last predicted timestamp. Since the
667
+ last timestamp typically occurs after the 15-second mark, it was predicted with low accuracy, causing the long-form
668
+ transcription to often fail.
669
+
670
+ To preserve Whisper's ability to transcribe sliding 30-second windows, as is done with sequential decoding, we need to
671
+ ensure the context length of distil-large-v3 is also 30-seconds. This was primarily achieved with four strategies:
672
+
673
+ 1. **Packing the audio samples in the training dataset to 30-seconds:** since the model is both pre-trained and distilled on audio data packed to 30-seconds, distil-large-v3 now operates on the same ideal context window as Whisper, predicting accurate timestamps up to and including 30-seconds.
674
+ 2. **Freezing the decoder input embeddings:** we use the same input embeds representation as the original model, which is designed to handle longer context lengths than previous Distil-Whisper iterations.
675
+ 3. **Using a longer maximum context length during training:** instead of training on a maximum target length of 128, we train on a maximum of 256. This helps distil-large-v3 transcribe 30-second segments where the number of tokens possibly exceeds 128.
676
+ 4. **Appending prompt conditioning to 50% of the training samples:** enables the model to be used with the `condition_on_prev_tokens` argument, and context windows up to 448 tokens.
677
+
678
+ There were further tricks that were employed to improve the performance of distil-large-v3 under the sequential decoding
679
+ algorithm, which we be explained fully in an upcoming blog post.
680
+
681
+ ## Evaluation
682
+
683
+ The following code-snippets demonstrates how to evaluate the Distil-Whisper model on the LibriSpeech validation-clean
684
+ dataset with [streaming mode](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet), meaning no
685
+ audio data has to be downloaded to your local device.
686
+
687
+ First, we need to install the required packages, including 🤗 Datasets to stream and load the audio data, and 🤗 Evaluate to
688
+ perform the WER calculation:
689
+
690
+ ```bash
691
+ pip install --upgrade pip
692
+ pip install --upgrade transformers datasets[audio] evaluate jiwer
693
+ ```
694
+
695
+ Evaluation can then be run end-to-end with the following example:
696
+
697
+ ```python
698
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
699
+ from datasets import load_dataset
700
+ from evaluate import load
701
+ import torch
702
+ from tqdm import tqdm
703
+
704
+ # define our torch configuration
705
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
706
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
707
+
708
+ model_id = "distil-whisper/distil-large-v3"
709
+
710
+ # load the model + processor
711
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True, low_cpu_mem_usage=True)
712
+ model = model.to(device)
713
+ processor = AutoProcessor.from_pretrained(model_id)
714
+
715
+ # load the dataset with streaming mode
716
+ dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
717
+
718
+ # define the evaluation metric
719
+ wer_metric = load("wer")
720
+
721
+ def inference(batch):
722
+ # 1. Pre-process the audio data to log-mel spectrogram inputs
723
+ audio = [sample["array"] for sample in batch["audio"]]
724
+ input_features = processor(audio, sampling_rate=batch["audio"][0]["sampling_rate"], return_tensors="pt").input_features
725
+ input_features = input_features.to(device, dtype=torch_dtype)
726
+
727
+ # 2. Auto-regressively generate the predicted token ids
728
+ pred_ids = model.generate(input_features, max_new_tokens=128)
729
+
730
+ # 3. Decode the token ids to the final transcription
731
+ batch["transcription"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
732
+ batch["reference"] = batch["text"]
733
+ return batch
734
+
735
+ # batch size 16 inference
736
+ dataset = dataset.map(function=inference, batched=True, batch_size=16)
737
+
738
+ all_transcriptions = []
739
+ all_references = []
740
+
741
+ # iterate over the dataset and run inference
742
+ for result in tqdm(dataset, desc="Evaluating..."):
743
+ all_transcriptions.append(result["transcription"])
744
+ all_references.append(result["reference"])
745
+
746
+ # normalize predictions and references
747
+ all_transcriptions = [processor.normalize(transcription) for transcription in all_transcriptions]
748
+ all_references = [processor.normalize(reference) for reference in all_references]
749
+
750
+ # compute the WER metric
751
+ wer = 100 * wer_metric.compute(predictions=all_transcriptions, references=all_references)
752
+ print(wer)
753
+
754
+ ```
755
+ **Print Output:**
756
+ ```
757
+ 2.428920763531516
758
+ ```
759
+
760
+ ## Intended Use
761
+
762
+ Distil-Whisper is intended to be a drop-in replacement for Whisper large-v3 on English speech recognition. In particular, it
763
+ achieves comparable WER results over out-of-distribution (OOD) test data, while being 6x faster on both short and long-form audio.
764
+
765
+ ## Data
766
+
767
+ Distil-Whisper is trained on 22,000 hours of audio data from nine open-source, permissively licensed speech datasets on the
768
+ Hugging Face Hub:
769
+
770
+ | Dataset | Size / h | Speakers | Domain | Licence |
771
+ |-----------------------------------------------------------------------------------------|----------|----------|-----------------------------|-----------------|
772
+ | [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech) | 12,000 | unknown | Internet Archive | CC-BY-SA-4.0 |
773
+ | [Common Voice 13](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) | 3,000 | unknown | Narrated Wikipedia | CC0-1.0 |
774
+ | [GigaSpeech](https://huggingface.co/datasets/speechcolab/gigaspeech) | 2,500 | unknown | Audiobook, podcast, YouTube | apache-2.0 |
775
+ | Fisher | 1,960 | 11,900 | Telephone conversations | LDC |
776
+ | [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) | 960 | 2,480 | Audiobooks | CC-BY-4.0 |
777
+ | [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | 540 | 1,310 | European Parliament | CC0 |
778
+ | [TED-LIUM](https://huggingface.co/datasets/LIUM/tedlium) | 450 | 2,030 | TED talks | CC-BY-NC-ND 3.0 |
779
+ | SwitchBoard | 260 | 540 | Telephone conversations | LDC |
780
+ | [AMI](https://huggingface.co/datasets/edinburghcstr/ami) | 100 | unknown | Meetings | CC-BY-4.0 |
781
+ ||||||
782
+ | **Total** | 21,770 | 18,260+ | | |
783
+
784
+ The combined dataset spans 10 distinct domains and over 50k speakers. The diversity of this dataset is crucial to ensuring
785
+ the distilled model is robust to audio distributions and noise.
786
+
787
+ The audio data is then pseudo-labelled using the Whisper large-v3 model: we use Whisper to generate predictions for all
788
+ the audio in our training set and use these as the target labels during training. Using pseudo-labels ensures that the
789
+ transcriptions are consistently formatted across datasets and provides sequence-level distillation signal during training.
790
+
791
+ ## WER Filter
792
+
793
+ The Whisper pseudo-label predictions are subject to mis-transcriptions and hallucinations. To ensure we only train on
794
+ accurate pseudo-labels, we employ a simple WER heuristic during training. First, we normalise the Whisper pseudo-labels
795
+ and the ground truth labels provided by each dataset. We then compute the WER between these labels. If the WER exceeds
796
+ a specified threshold, we discard the training example. Otherwise, we keep it for training.
797
+
798
+ Section 9.2 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) demonstrates the effectiveness of this filter
799
+ for improving downstream performance of the distilled model. We also partially attribute Distil-Whisper's robustness to
800
+ hallucinations to this filter.
801
+
802
+ ## Training
803
+
804
+ The model was trained for 80,000 optimisation steps (or 11 epochs) with batch size 256. The Tensorboard training logs can
805
+ be found under: https://huggingface.co/distil-whisper/distil-large-v3/tensorboard?params=scalars#frame
806
+
807
+ ## Results
808
+
809
+ The distilled model performs to within 1.5% WER of Whisper large-v3 on out-of-distribution (OOD) short-form audio, within
810
+ 1% WER on sequential long-form decoding, and outperforms large-v3 by 0.1% on chunked long-form. This performance gain is
811
+ attributed to lower hallucinations.
812
+
813
+ For a detailed per-dataset breakdown of the evaluation results, refer to Tables 16 and 17 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)
814
+
815
+ Distil-Whisper is also evaluated on the [ESB benchmark](https://arxiv.org/abs/2210.13352) datasets as part of the [OpenASR leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard),
816
+ where it performs to within 0.2% WER of Whisper.
817
+
818
+ ## Reproducing Distil-Whisper
819
+
820
+ Training and evaluation code to reproduce Distil-Whisper is available under the Distil-Whisper repository: https://github.com/huggingface/distil-whisper/tree/main/training
821
+
822
+ This code will shortly be updated to include the training updates described in the section [Differences with distil-large-v2](#differences-with-distil-large-v2).
823
+
824
+ ## License
825
+
826
+ Distil-Whisper inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model.
827
+
828
+ ## Citation
829
+
830
+ If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430):
831
+ ```
832
+ @misc{gandhi2023distilwhisper,
833
+ title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling},
834
+ author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
835
+ year={2023},
836
+ eprint={2311.00430},
837
+ archivePrefix={arXiv},
838
+ primaryClass={cs.CL}
839
+ }
840
+ ```
841
+
842
+ ## Acknowledgements
843
+ * OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v3), in particular Jong Wook Kim for the [original codebase](https://github.com/openai/whisper) and training discussions
844
+ * Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration
845
+ * [Georgi Gerganov](https://huggingface.co/ggerganov) for the Whisper cpp integration
846
+ * [Systran team](https://github.com/SYSTRAN) for the Faster-Whisper integration
847
+ * [Joshua Lochner](https://huggingface.co/xenova) for the Transformers.js integration
848
+ * [Laurent Mazare](https://huggingface.co/lmz) for the Candle integration
849
+ * [Vaibhav Srivastav](https://huggingface.co/reach-vb) for Distil-Whisper distribution
850
+ * Google's [TPU Research Cloud (TRC)](https://sites.research.google/trc/about/) programme for Cloud TPU v4 compute resource
851
+ * [Raghav Sonavane](https://huggingface.co/rsonavane/distil-whisper-large-v2-8-ls) for an early iteration of Distil-Whisper on the LibriSpeech dataset
added_tokens.json ADDED
@@ -0,0 +1,1611 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|0.00|>": 50365,
3
+ "<|0.02|>": 50366,
4
+ "<|0.04|>": 50367,
5
+ "<|0.06|>": 50368,
6
+ "<|0.08|>": 50369,
7
+ "<|0.10|>": 50370,
8
+ "<|0.12|>": 50371,
9
+ "<|0.14|>": 50372,
10
+ "<|0.16|>": 50373,
11
+ "<|0.18|>": 50374,
12
+ "<|0.20|>": 50375,
13
+ "<|0.22|>": 50376,
14
+ "<|0.24|>": 50377,
15
+ "<|0.26|>": 50378,
16
+ "<|0.28|>": 50379,
17
+ "<|0.30|>": 50380,
18
+ "<|0.32|>": 50381,
19
+ "<|0.34|>": 50382,
20
+ "<|0.36|>": 50383,
21
+ "<|0.38|>": 50384,
22
+ "<|0.40|>": 50385,
23
+ "<|0.42|>": 50386,
24
+ "<|0.44|>": 50387,
25
+ "<|0.46|>": 50388,
26
+ "<|0.48|>": 50389,
27
+ "<|0.50|>": 50390,
28
+ "<|0.52|>": 50391,
29
+ "<|0.54|>": 50392,
30
+ "<|0.56|>": 50393,
31
+ "<|0.58|>": 50394,
32
+ "<|0.60|>": 50395,
33
+ "<|0.62|>": 50396,
34
+ "<|0.64|>": 50397,
35
+ "<|0.66|>": 50398,
36
+ "<|0.68|>": 50399,
37
+ "<|0.70|>": 50400,
38
+ "<|0.72|>": 50401,
39
+ "<|0.74|>": 50402,
40
+ "<|0.76|>": 50403,
41
+ "<|0.78|>": 50404,
42
+ "<|0.80|>": 50405,
43
+ "<|0.82|>": 50406,
44
+ "<|0.84|>": 50407,
45
+ "<|0.86|>": 50408,
46
+ "<|0.88|>": 50409,
47
+ "<|0.90|>": 50410,
48
+ "<|0.92|>": 50411,
49
+ "<|0.94|>": 50412,
50
+ "<|0.96|>": 50413,
51
+ "<|0.98|>": 50414,
52
+ "<|1.00|>": 50415,
53
+ "<|1.02|>": 50416,
54
+ "<|1.04|>": 50417,
55
+ "<|1.06|>": 50418,
56
+ "<|1.08|>": 50419,
57
+ "<|1.10|>": 50420,
58
+ "<|1.12|>": 50421,
59
+ "<|1.14|>": 50422,
60
+ "<|1.16|>": 50423,
61
+ "<|1.18|>": 50424,
62
+ "<|1.20|>": 50425,
63
+ "<|1.22|>": 50426,
64
+ "<|1.24|>": 50427,
65
+ "<|1.26|>": 50428,
66
+ "<|1.28|>": 50429,
67
+ "<|1.30|>": 50430,
68
+ "<|1.32|>": 50431,
69
+ "<|1.34|>": 50432,
70
+ "<|1.36|>": 50433,
71
+ "<|1.38|>": 50434,
72
+ "<|1.40|>": 50435,
73
+ "<|1.42|>": 50436,
74
+ "<|1.44|>": 50437,
75
+ "<|1.46|>": 50438,
76
+ "<|1.48|>": 50439,
77
+ "<|1.50|>": 50440,
78
+ "<|1.52|>": 50441,
79
+ "<|1.54|>": 50442,
80
+ "<|1.56|>": 50443,
81
+ "<|1.58|>": 50444,
82
+ "<|1.60|>": 50445,
83
+ "<|1.62|>": 50446,
84
+ "<|1.64|>": 50447,
85
+ "<|1.66|>": 50448,
86
+ "<|1.68|>": 50449,
87
+ "<|1.70|>": 50450,
88
+ "<|1.72|>": 50451,
89
+ "<|1.74|>": 50452,
90
+ "<|1.76|>": 50453,
91
+ "<|1.78|>": 50454,
92
+ "<|1.80|>": 50455,
93
+ "<|1.82|>": 50456,
94
+ "<|1.84|>": 50457,
95
+ "<|1.86|>": 50458,
96
+ "<|1.88|>": 50459,
97
+ "<|1.90|>": 50460,
98
+ "<|1.92|>": 50461,
99
+ "<|1.94|>": 50462,
100
+ "<|1.96|>": 50463,
101
+ "<|1.98|>": 50464,
102
+ "<|10.00|>": 50865,
103
+ "<|10.02|>": 50866,
104
+ "<|10.04|>": 50867,
105
+ "<|10.06|>": 50868,
106
+ "<|10.08|>": 50869,
107
+ "<|10.10|>": 50870,
108
+ "<|10.12|>": 50871,
109
+ "<|10.14|>": 50872,
110
+ "<|10.16|>": 50873,
111
+ "<|10.18|>": 50874,
112
+ "<|10.20|>": 50875,
113
+ "<|10.22|>": 50876,
114
+ "<|10.24|>": 50877,
115
+ "<|10.26|>": 50878,
116
+ "<|10.28|>": 50879,
117
+ "<|10.30|>": 50880,
118
+ "<|10.32|>": 50881,
119
+ "<|10.34|>": 50882,
120
+ "<|10.36|>": 50883,
121
+ "<|10.38|>": 50884,
122
+ "<|10.40|>": 50885,
123
+ "<|10.42|>": 50886,
124
+ "<|10.44|>": 50887,
125
+ "<|10.46|>": 50888,
126
+ "<|10.48|>": 50889,
127
+ "<|10.50|>": 50890,
128
+ "<|10.52|>": 50891,
129
+ "<|10.54|>": 50892,
130
+ "<|10.56|>": 50893,
131
+ "<|10.58|>": 50894,
132
+ "<|10.60|>": 50895,
133
+ "<|10.62|>": 50896,
134
+ "<|10.64|>": 50897,
135
+ "<|10.66|>": 50898,
136
+ "<|10.68|>": 50899,
137
+ "<|10.70|>": 50900,
138
+ "<|10.72|>": 50901,
139
+ "<|10.74|>": 50902,
140
+ "<|10.76|>": 50903,
141
+ "<|10.78|>": 50904,
142
+ "<|10.80|>": 50905,
143
+ "<|10.82|>": 50906,
144
+ "<|10.84|>": 50907,
145
+ "<|10.86|>": 50908,
146
+ "<|10.88|>": 50909,
147
+ "<|10.90|>": 50910,
148
+ "<|10.92|>": 50911,
149
+ "<|10.94|>": 50912,
150
+ "<|10.96|>": 50913,
151
+ "<|10.98|>": 50914,
152
+ "<|11.00|>": 50915,
153
+ "<|11.02|>": 50916,
154
+ "<|11.04|>": 50917,
155
+ "<|11.06|>": 50918,
156
+ "<|11.08|>": 50919,
157
+ "<|11.10|>": 50920,
158
+ "<|11.12|>": 50921,
159
+ "<|11.14|>": 50922,
160
+ "<|11.16|>": 50923,
161
+ "<|11.18|>": 50924,
162
+ "<|11.20|>": 50925,
163
+ "<|11.22|>": 50926,
164
+ "<|11.24|>": 50927,
165
+ "<|11.26|>": 50928,
166
+ "<|11.28|>": 50929,
167
+ "<|11.30|>": 50930,
168
+ "<|11.32|>": 50931,
169
+ "<|11.34|>": 50932,
170
+ "<|11.36|>": 50933,
171
+ "<|11.38|>": 50934,
172
+ "<|11.40|>": 50935,
173
+ "<|11.42|>": 50936,
174
+ "<|11.44|>": 50937,
175
+ "<|11.46|>": 50938,
176
+ "<|11.48|>": 50939,
177
+ "<|11.50|>": 50940,
178
+ "<|11.52|>": 50941,
179
+ "<|11.54|>": 50942,
180
+ "<|11.56|>": 50943,
181
+ "<|11.58|>": 50944,
182
+ "<|11.60|>": 50945,
183
+ "<|11.62|>": 50946,
184
+ "<|11.64|>": 50947,
185
+ "<|11.66|>": 50948,
186
+ "<|11.68|>": 50949,
187
+ "<|11.70|>": 50950,
188
+ "<|11.72|>": 50951,
189
+ "<|11.74|>": 50952,
190
+ "<|11.76|>": 50953,
191
+ "<|11.78|>": 50954,
192
+ "<|11.80|>": 50955,
193
+ "<|11.82|>": 50956,
194
+ "<|11.84|>": 50957,
195
+ "<|11.86|>": 50958,
196
+ "<|11.88|>": 50959,
197
+ "<|11.90|>": 50960,
198
+ "<|11.92|>": 50961,
199
+ "<|11.94|>": 50962,
200
+ "<|11.96|>": 50963,
201
+ "<|11.98|>": 50964,
202
+ "<|12.00|>": 50965,
203
+ "<|12.02|>": 50966,
204
+ "<|12.04|>": 50967,
205
+ "<|12.06|>": 50968,
206
+ "<|12.08|>": 50969,
207
+ "<|12.10|>": 50970,
208
+ "<|12.12|>": 50971,
209
+ "<|12.14|>": 50972,
210
+ "<|12.16|>": 50973,
211
+ "<|12.18|>": 50974,
212
+ "<|12.20|>": 50975,
213
+ "<|12.22|>": 50976,
214
+ "<|12.24|>": 50977,
215
+ "<|12.26|>": 50978,
216
+ "<|12.28|>": 50979,
217
+ "<|12.30|>": 50980,
218
+ "<|12.32|>": 50981,
219
+ "<|12.34|>": 50982,
220
+ "<|12.36|>": 50983,
221
+ "<|12.38|>": 50984,
222
+ "<|12.40|>": 50985,
223
+ "<|12.42|>": 50986,
224
+ "<|12.44|>": 50987,
225
+ "<|12.46|>": 50988,
226
+ "<|12.48|>": 50989,
227
+ "<|12.50|>": 50990,
228
+ "<|12.52|>": 50991,
229
+ "<|12.54|>": 50992,
230
+ "<|12.56|>": 50993,
231
+ "<|12.58|>": 50994,
232
+ "<|12.60|>": 50995,
233
+ "<|12.62|>": 50996,
234
+ "<|12.64|>": 50997,
235
+ "<|12.66|>": 50998,
236
+ "<|12.68|>": 50999,
237
+ "<|12.70|>": 51000,
238
+ "<|12.72|>": 51001,
239
+ "<|12.74|>": 51002,
240
+ "<|12.76|>": 51003,
241
+ "<|12.78|>": 51004,
242
+ "<|12.80|>": 51005,
243
+ "<|12.82|>": 51006,
244
+ "<|12.84|>": 51007,
245
+ "<|12.86|>": 51008,
246
+ "<|12.88|>": 51009,
247
+ "<|12.90|>": 51010,
248
+ "<|12.92|>": 51011,
249
+ "<|12.94|>": 51012,
250
+ "<|12.96|>": 51013,
251
+ "<|12.98|>": 51014,
252
+ "<|13.00|>": 51015,
253
+ "<|13.02|>": 51016,
254
+ "<|13.04|>": 51017,
255
+ "<|13.06|>": 51018,
256
+ "<|13.08|>": 51019,
257
+ "<|13.10|>": 51020,
258
+ "<|13.12|>": 51021,
259
+ "<|13.14|>": 51022,
260
+ "<|13.16|>": 51023,
261
+ "<|13.18|>": 51024,
262
+ "<|13.20|>": 51025,
263
+ "<|13.22|>": 51026,
264
+ "<|13.24|>": 51027,
265
+ "<|13.26|>": 51028,
266
+ "<|13.28|>": 51029,
267
+ "<|13.30|>": 51030,
268
+ "<|13.32|>": 51031,
269
+ "<|13.34|>": 51032,
270
+ "<|13.36|>": 51033,
271
+ "<|13.38|>": 51034,
272
+ "<|13.40|>": 51035,
273
+ "<|13.42|>": 51036,
274
+ "<|13.44|>": 51037,
275
+ "<|13.46|>": 51038,
276
+ "<|13.48|>": 51039,
277
+ "<|13.50|>": 51040,
278
+ "<|13.52|>": 51041,
279
+ "<|13.54|>": 51042,
280
+ "<|13.56|>": 51043,
281
+ "<|13.58|>": 51044,
282
+ "<|13.60|>": 51045,
283
+ "<|13.62|>": 51046,
284
+ "<|13.64|>": 51047,
285
+ "<|13.66|>": 51048,
286
+ "<|13.68|>": 51049,
287
+ "<|13.70|>": 51050,
288
+ "<|13.72|>": 51051,
289
+ "<|13.74|>": 51052,
290
+ "<|13.76|>": 51053,
291
+ "<|13.78|>": 51054,
292
+ "<|13.80|>": 51055,
293
+ "<|13.82|>": 51056,
294
+ "<|13.84|>": 51057,
295
+ "<|13.86|>": 51058,
296
+ "<|13.88|>": 51059,
297
+ "<|13.90|>": 51060,
298
+ "<|13.92|>": 51061,
299
+ "<|13.94|>": 51062,
300
+ "<|13.96|>": 51063,
301
+ "<|13.98|>": 51064,
302
+ "<|14.00|>": 51065,
303
+ "<|14.02|>": 51066,
304
+ "<|14.04|>": 51067,
305
+ "<|14.06|>": 51068,
306
+ "<|14.08|>": 51069,
307
+ "<|14.10|>": 51070,
308
+ "<|14.12|>": 51071,
309
+ "<|14.14|>": 51072,
310
+ "<|14.16|>": 51073,
311
+ "<|14.18|>": 51074,
312
+ "<|14.20|>": 51075,
313
+ "<|14.22|>": 51076,
314
+ "<|14.24|>": 51077,
315
+ "<|14.26|>": 51078,
316
+ "<|14.28|>": 51079,
317
+ "<|14.30|>": 51080,
318
+ "<|14.32|>": 51081,
319
+ "<|14.34|>": 51082,
320
+ "<|14.36|>": 51083,
321
+ "<|14.38|>": 51084,
322
+ "<|14.40|>": 51085,
323
+ "<|14.42|>": 51086,
324
+ "<|14.44|>": 51087,
325
+ "<|14.46|>": 51088,
326
+ "<|14.48|>": 51089,
327
+ "<|14.50|>": 51090,
328
+ "<|14.52|>": 51091,
329
+ "<|14.54|>": 51092,
330
+ "<|14.56|>": 51093,
331
+ "<|14.58|>": 51094,
332
+ "<|14.60|>": 51095,
333
+ "<|14.62|>": 51096,
334
+ "<|14.64|>": 51097,
335
+ "<|14.66|>": 51098,
336
+ "<|14.68|>": 51099,
337
+ "<|14.70|>": 51100,
338
+ "<|14.72|>": 51101,
339
+ "<|14.74|>": 51102,
340
+ "<|14.76|>": 51103,
341
+ "<|14.78|>": 51104,
342
+ "<|14.80|>": 51105,
343
+ "<|14.82|>": 51106,
344
+ "<|14.84|>": 51107,
345
+ "<|14.86|>": 51108,
346
+ "<|14.88|>": 51109,
347
+ "<|14.90|>": 51110,
348
+ "<|14.92|>": 51111,
349
+ "<|14.94|>": 51112,
350
+ "<|14.96|>": 51113,
351
+ "<|14.98|>": 51114,
352
+ "<|15.00|>": 51115,
353
+ "<|15.02|>": 51116,
354
+ "<|15.04|>": 51117,
355
+ "<|15.06|>": 51118,
356
+ "<|15.08|>": 51119,
357
+ "<|15.10|>": 51120,
358
+ "<|15.12|>": 51121,
359
+ "<|15.14|>": 51122,
360
+ "<|15.16|>": 51123,
361
+ "<|15.18|>": 51124,
362
+ "<|15.20|>": 51125,
363
+ "<|15.22|>": 51126,
364
+ "<|15.24|>": 51127,
365
+ "<|15.26|>": 51128,
366
+ "<|15.28|>": 51129,
367
+ "<|15.30|>": 51130,
368
+ "<|15.32|>": 51131,
369
+ "<|15.34|>": 51132,
370
+ "<|15.36|>": 51133,
371
+ "<|15.38|>": 51134,
372
+ "<|15.40|>": 51135,
373
+ "<|15.42|>": 51136,
374
+ "<|15.44|>": 51137,
375
+ "<|15.46|>": 51138,
376
+ "<|15.48|>": 51139,
377
+ "<|15.50|>": 51140,
378
+ "<|15.52|>": 51141,
379
+ "<|15.54|>": 51142,
380
+ "<|15.56|>": 51143,
381
+ "<|15.58|>": 51144,
382
+ "<|15.60|>": 51145,
383
+ "<|15.62|>": 51146,
384
+ "<|15.64|>": 51147,
385
+ "<|15.66|>": 51148,
386
+ "<|15.68|>": 51149,
387
+ "<|15.70|>": 51150,
388
+ "<|15.72|>": 51151,
389
+ "<|15.74|>": 51152,
390
+ "<|15.76|>": 51153,
391
+ "<|15.78|>": 51154,
392
+ "<|15.80|>": 51155,
393
+ "<|15.82|>": 51156,
394
+ "<|15.84|>": 51157,
395
+ "<|15.86|>": 51158,
396
+ "<|15.88|>": 51159,
397
+ "<|15.90|>": 51160,
398
+ "<|15.92|>": 51161,
399
+ "<|15.94|>": 51162,
400
+ "<|15.96|>": 51163,
401
+ "<|15.98|>": 51164,
402
+ "<|16.00|>": 51165,
403
+ "<|16.02|>": 51166,
404
+ "<|16.04|>": 51167,
405
+ "<|16.06|>": 51168,
406
+ "<|16.08|>": 51169,
407
+ "<|16.10|>": 51170,
408
+ "<|16.12|>": 51171,
409
+ "<|16.14|>": 51172,
410
+ "<|16.16|>": 51173,
411
+ "<|16.18|>": 51174,
412
+ "<|16.20|>": 51175,
413
+ "<|16.22|>": 51176,
414
+ "<|16.24|>": 51177,
415
+ "<|16.26|>": 51178,
416
+ "<|16.28|>": 51179,
417
+ "<|16.30|>": 51180,
418
+ "<|16.32|>": 51181,
419
+ "<|16.34|>": 51182,
420
+ "<|16.36|>": 51183,
421
+ "<|16.38|>": 51184,
422
+ "<|16.40|>": 51185,
423
+ "<|16.42|>": 51186,
424
+ "<|16.44|>": 51187,
425
+ "<|16.46|>": 51188,
426
+ "<|16.48|>": 51189,
427
+ "<|16.50|>": 51190,
428
+ "<|16.52|>": 51191,
429
+ "<|16.54|>": 51192,
430
+ "<|16.56|>": 51193,
431
+ "<|16.58|>": 51194,
432
+ "<|16.60|>": 51195,
433
+ "<|16.62|>": 51196,
434
+ "<|16.64|>": 51197,
435
+ "<|16.66|>": 51198,
436
+ "<|16.68|>": 51199,
437
+ "<|16.70|>": 51200,
438
+ "<|16.72|>": 51201,
439
+ "<|16.74|>": 51202,
440
+ "<|16.76|>": 51203,
441
+ "<|16.78|>": 51204,
442
+ "<|16.80|>": 51205,
443
+ "<|16.82|>": 51206,
444
+ "<|16.84|>": 51207,
445
+ "<|16.86|>": 51208,
446
+ "<|16.88|>": 51209,
447
+ "<|16.90|>": 51210,
448
+ "<|16.92|>": 51211,
449
+ "<|16.94|>": 51212,
450
+ "<|16.96|>": 51213,
451
+ "<|16.98|>": 51214,
452
+ "<|17.00|>": 51215,
453
+ "<|17.02|>": 51216,
454
+ "<|17.04|>": 51217,
455
+ "<|17.06|>": 51218,
456
+ "<|17.08|>": 51219,
457
+ "<|17.10|>": 51220,
458
+ "<|17.12|>": 51221,
459
+ "<|17.14|>": 51222,
460
+ "<|17.16|>": 51223,
461
+ "<|17.18|>": 51224,
462
+ "<|17.20|>": 51225,
463
+ "<|17.22|>": 51226,
464
+ "<|17.24|>": 51227,
465
+ "<|17.26|>": 51228,
466
+ "<|17.28|>": 51229,
467
+ "<|17.30|>": 51230,
468
+ "<|17.32|>": 51231,
469
+ "<|17.34|>": 51232,
470
+ "<|17.36|>": 51233,
471
+ "<|17.38|>": 51234,
472
+ "<|17.40|>": 51235,
473
+ "<|17.42|>": 51236,
474
+ "<|17.44|>": 51237,
475
+ "<|17.46|>": 51238,
476
+ "<|17.48|>": 51239,
477
+ "<|17.50|>": 51240,
478
+ "<|17.52|>": 51241,
479
+ "<|17.54|>": 51242,
480
+ "<|17.56|>": 51243,
481
+ "<|17.58|>": 51244,
482
+ "<|17.60|>": 51245,
483
+ "<|17.62|>": 51246,
484
+ "<|17.64|>": 51247,
485
+ "<|17.66|>": 51248,
486
+ "<|17.68|>": 51249,
487
+ "<|17.70|>": 51250,
488
+ "<|17.72|>": 51251,
489
+ "<|17.74|>": 51252,
490
+ "<|17.76|>": 51253,
491
+ "<|17.78|>": 51254,
492
+ "<|17.80|>": 51255,
493
+ "<|17.82|>": 51256,
494
+ "<|17.84|>": 51257,
495
+ "<|17.86|>": 51258,
496
+ "<|17.88|>": 51259,
497
+ "<|17.90|>": 51260,
498
+ "<|17.92|>": 51261,
499
+ "<|17.94|>": 51262,
500
+ "<|17.96|>": 51263,
501
+ "<|17.98|>": 51264,
502
+ "<|18.00|>": 51265,
503
+ "<|18.02|>": 51266,
504
+ "<|18.04|>": 51267,
505
+ "<|18.06|>": 51268,
506
+ "<|18.08|>": 51269,
507
+ "<|18.10|>": 51270,
508
+ "<|18.12|>": 51271,
509
+ "<|18.14|>": 51272,
510
+ "<|18.16|>": 51273,
511
+ "<|18.18|>": 51274,
512
+ "<|18.20|>": 51275,
513
+ "<|18.22|>": 51276,
514
+ "<|18.24|>": 51277,
515
+ "<|18.26|>": 51278,
516
+ "<|18.28|>": 51279,
517
+ "<|18.30|>": 51280,
518
+ "<|18.32|>": 51281,
519
+ "<|18.34|>": 51282,
520
+ "<|18.36|>": 51283,
521
+ "<|18.38|>": 51284,
522
+ "<|18.40|>": 51285,
523
+ "<|18.42|>": 51286,
524
+ "<|18.44|>": 51287,
525
+ "<|18.46|>": 51288,
526
+ "<|18.48|>": 51289,
527
+ "<|18.50|>": 51290,
528
+ "<|18.52|>": 51291,
529
+ "<|18.54|>": 51292,
530
+ "<|18.56|>": 51293,
531
+ "<|18.58|>": 51294,
532
+ "<|18.60|>": 51295,
533
+ "<|18.62|>": 51296,
534
+ "<|18.64|>": 51297,
535
+ "<|18.66|>": 51298,
536
+ "<|18.68|>": 51299,
537
+ "<|18.70|>": 51300,
538
+ "<|18.72|>": 51301,
539
+ "<|18.74|>": 51302,
540
+ "<|18.76|>": 51303,
541
+ "<|18.78|>": 51304,
542
+ "<|18.80|>": 51305,
543
+ "<|18.82|>": 51306,
544
+ "<|18.84|>": 51307,
545
+ "<|18.86|>": 51308,
546
+ "<|18.88|>": 51309,
547
+ "<|18.90|>": 51310,
548
+ "<|18.92|>": 51311,
549
+ "<|18.94|>": 51312,
550
+ "<|18.96|>": 51313,
551
+ "<|18.98|>": 51314,
552
+ "<|19.00|>": 51315,
553
+ "<|19.02|>": 51316,
554
+ "<|19.04|>": 51317,
555
+ "<|19.06|>": 51318,
556
+ "<|19.08|>": 51319,
557
+ "<|19.10|>": 51320,
558
+ "<|19.12|>": 51321,
559
+ "<|19.14|>": 51322,
560
+ "<|19.16|>": 51323,
561
+ "<|19.18|>": 51324,
562
+ "<|19.20|>": 51325,
563
+ "<|19.22|>": 51326,
564
+ "<|19.24|>": 51327,
565
+ "<|19.26|>": 51328,
566
+ "<|19.28|>": 51329,
567
+ "<|19.30|>": 51330,
568
+ "<|19.32|>": 51331,
569
+ "<|19.34|>": 51332,
570
+ "<|19.36|>": 51333,
571
+ "<|19.38|>": 51334,
572
+ "<|19.40|>": 51335,
573
+ "<|19.42|>": 51336,
574
+ "<|19.44|>": 51337,
575
+ "<|19.46|>": 51338,
576
+ "<|19.48|>": 51339,
577
+ "<|19.50|>": 51340,
578
+ "<|19.52|>": 51341,
579
+ "<|19.54|>": 51342,
580
+ "<|19.56|>": 51343,
581
+ "<|19.58|>": 51344,
582
+ "<|19.60|>": 51345,
583
+ "<|19.62|>": 51346,
584
+ "<|19.64|>": 51347,
585
+ "<|19.66|>": 51348,
586
+ "<|19.68|>": 51349,
587
+ "<|19.70|>": 51350,
588
+ "<|19.72|>": 51351,
589
+ "<|19.74|>": 51352,
590
+ "<|19.76|>": 51353,
591
+ "<|19.78|>": 51354,
592
+ "<|19.80|>": 51355,
593
+ "<|19.82|>": 51356,
594
+ "<|19.84|>": 51357,
595
+ "<|19.86|>": 51358,
596
+ "<|19.88|>": 51359,
597
+ "<|19.90|>": 51360,
598
+ "<|19.92|>": 51361,
599
+ "<|19.94|>": 51362,
600
+ "<|19.96|>": 51363,
601
+ "<|19.98|>": 51364,
602
+ "<|2.00|>": 50465,
603
+ "<|2.02|>": 50466,
604
+ "<|2.04|>": 50467,
605
+ "<|2.06|>": 50468,
606
+ "<|2.08|>": 50469,
607
+ "<|2.10|>": 50470,
608
+ "<|2.12|>": 50471,
609
+ "<|2.14|>": 50472,
610
+ "<|2.16|>": 50473,
611
+ "<|2.18|>": 50474,
612
+ "<|2.20|>": 50475,
613
+ "<|2.22|>": 50476,
614
+ "<|2.24|>": 50477,
615
+ "<|2.26|>": 50478,
616
+ "<|2.28|>": 50479,
617
+ "<|2.30|>": 50480,
618
+ "<|2.32|>": 50481,
619
+ "<|2.34|>": 50482,
620
+ "<|2.36|>": 50483,
621
+ "<|2.38|>": 50484,
622
+ "<|2.40|>": 50485,
623
+ "<|2.42|>": 50486,
624
+ "<|2.44|>": 50487,
625
+ "<|2.46|>": 50488,
626
+ "<|2.48|>": 50489,
627
+ "<|2.50|>": 50490,
628
+ "<|2.52|>": 50491,
629
+ "<|2.54|>": 50492,
630
+ "<|2.56|>": 50493,
631
+ "<|2.58|>": 50494,
632
+ "<|2.60|>": 50495,
633
+ "<|2.62|>": 50496,
634
+ "<|2.64|>": 50497,
635
+ "<|2.66|>": 50498,
636
+ "<|2.68|>": 50499,
637
+ "<|2.70|>": 50500,
638
+ "<|2.72|>": 50501,
639
+ "<|2.74|>": 50502,
640
+ "<|2.76|>": 50503,
641
+ "<|2.78|>": 50504,
642
+ "<|2.80|>": 50505,
643
+ "<|2.82|>": 50506,
644
+ "<|2.84|>": 50507,
645
+ "<|2.86|>": 50508,
646
+ "<|2.88|>": 50509,
647
+ "<|2.90|>": 50510,
648
+ "<|2.92|>": 50511,
649
+ "<|2.94|>": 50512,
650
+ "<|2.96|>": 50513,
651
+ "<|2.98|>": 50514,
652
+ "<|20.00|>": 51365,
653
+ "<|20.02|>": 51366,
654
+ "<|20.04|>": 51367,
655
+ "<|20.06|>": 51368,
656
+ "<|20.08|>": 51369,
657
+ "<|20.10|>": 51370,
658
+ "<|20.12|>": 51371,
659
+ "<|20.14|>": 51372,
660
+ "<|20.16|>": 51373,
661
+ "<|20.18|>": 51374,
662
+ "<|20.20|>": 51375,
663
+ "<|20.22|>": 51376,
664
+ "<|20.24|>": 51377,
665
+ "<|20.26|>": 51378,
666
+ "<|20.28|>": 51379,
667
+ "<|20.30|>": 51380,
668
+ "<|20.32|>": 51381,
669
+ "<|20.34|>": 51382,
670
+ "<|20.36|>": 51383,
671
+ "<|20.38|>": 51384,
672
+ "<|20.40|>": 51385,
673
+ "<|20.42|>": 51386,
674
+ "<|20.44|>": 51387,
675
+ "<|20.46|>": 51388,
676
+ "<|20.48|>": 51389,
677
+ "<|20.50|>": 51390,
678
+ "<|20.52|>": 51391,
679
+ "<|20.54|>": 51392,
680
+ "<|20.56|>": 51393,
681
+ "<|20.58|>": 51394,
682
+ "<|20.60|>": 51395,
683
+ "<|20.62|>": 51396,
684
+ "<|20.64|>": 51397,
685
+ "<|20.66|>": 51398,
686
+ "<|20.68|>": 51399,
687
+ "<|20.70|>": 51400,
688
+ "<|20.72|>": 51401,
689
+ "<|20.74|>": 51402,
690
+ "<|20.76|>": 51403,
691
+ "<|20.78|>": 51404,
692
+ "<|20.80|>": 51405,
693
+ "<|20.82|>": 51406,
694
+ "<|20.84|>": 51407,
695
+ "<|20.86|>": 51408,
696
+ "<|20.88|>": 51409,
697
+ "<|20.90|>": 51410,
698
+ "<|20.92|>": 51411,
699
+ "<|20.94|>": 51412,
700
+ "<|20.96|>": 51413,
701
+ "<|20.98|>": 51414,
702
+ "<|21.00|>": 51415,
703
+ "<|21.02|>": 51416,
704
+ "<|21.04|>": 51417,
705
+ "<|21.06|>": 51418,
706
+ "<|21.08|>": 51419,
707
+ "<|21.10|>": 51420,
708
+ "<|21.12|>": 51421,
709
+ "<|21.14|>": 51422,
710
+ "<|21.16|>": 51423,
711
+ "<|21.18|>": 51424,
712
+ "<|21.20|>": 51425,
713
+ "<|21.22|>": 51426,
714
+ "<|21.24|>": 51427,
715
+ "<|21.26|>": 51428,
716
+ "<|21.28|>": 51429,
717
+ "<|21.30|>": 51430,
718
+ "<|21.32|>": 51431,
719
+ "<|21.34|>": 51432,
720
+ "<|21.36|>": 51433,
721
+ "<|21.38|>": 51434,
722
+ "<|21.40|>": 51435,
723
+ "<|21.42|>": 51436,
724
+ "<|21.44|>": 51437,
725
+ "<|21.46|>": 51438,
726
+ "<|21.48|>": 51439,
727
+ "<|21.50|>": 51440,
728
+ "<|21.52|>": 51441,
729
+ "<|21.54|>": 51442,
730
+ "<|21.56|>": 51443,
731
+ "<|21.58|>": 51444,
732
+ "<|21.60|>": 51445,
733
+ "<|21.62|>": 51446,
734
+ "<|21.64|>": 51447,
735
+ "<|21.66|>": 51448,
736
+ "<|21.68|>": 51449,
737
+ "<|21.70|>": 51450,
738
+ "<|21.72|>": 51451,
739
+ "<|21.74|>": 51452,
740
+ "<|21.76|>": 51453,
741
+ "<|21.78|>": 51454,
742
+ "<|21.80|>": 51455,
743
+ "<|21.82|>": 51456,
744
+ "<|21.84|>": 51457,
745
+ "<|21.86|>": 51458,
746
+ "<|21.88|>": 51459,
747
+ "<|21.90|>": 51460,
748
+ "<|21.92|>": 51461,
749
+ "<|21.94|>": 51462,
750
+ "<|21.96|>": 51463,
751
+ "<|21.98|>": 51464,
752
+ "<|22.00|>": 51465,
753
+ "<|22.02|>": 51466,
754
+ "<|22.04|>": 51467,
755
+ "<|22.06|>": 51468,
756
+ "<|22.08|>": 51469,
757
+ "<|22.10|>": 51470,
758
+ "<|22.12|>": 51471,
759
+ "<|22.14|>": 51472,
760
+ "<|22.16|>": 51473,
761
+ "<|22.18|>": 51474,
762
+ "<|22.20|>": 51475,
763
+ "<|22.22|>": 51476,
764
+ "<|22.24|>": 51477,
765
+ "<|22.26|>": 51478,
766
+ "<|22.28|>": 51479,
767
+ "<|22.30|>": 51480,
768
+ "<|22.32|>": 51481,
769
+ "<|22.34|>": 51482,
770
+ "<|22.36|>": 51483,
771
+ "<|22.38|>": 51484,
772
+ "<|22.40|>": 51485,
773
+ "<|22.42|>": 51486,
774
+ "<|22.44|>": 51487,
775
+ "<|22.46|>": 51488,
776
+ "<|22.48|>": 51489,
777
+ "<|22.50|>": 51490,
778
+ "<|22.52|>": 51491,
779
+ "<|22.54|>": 51492,
780
+ "<|22.56|>": 51493,
781
+ "<|22.58|>": 51494,
782
+ "<|22.60|>": 51495,
783
+ "<|22.62|>": 51496,
784
+ "<|22.64|>": 51497,
785
+ "<|22.66|>": 51498,
786
+ "<|22.68|>": 51499,
787
+ "<|22.70|>": 51500,
788
+ "<|22.72|>": 51501,
789
+ "<|22.74|>": 51502,
790
+ "<|22.76|>": 51503,
791
+ "<|22.78|>": 51504,
792
+ "<|22.80|>": 51505,
793
+ "<|22.82|>": 51506,
794
+ "<|22.84|>": 51507,
795
+ "<|22.86|>": 51508,
796
+ "<|22.88|>": 51509,
797
+ "<|22.90|>": 51510,
798
+ "<|22.92|>": 51511,
799
+ "<|22.94|>": 51512,
800
+ "<|22.96|>": 51513,
801
+ "<|22.98|>": 51514,
802
+ "<|23.00|>": 51515,
803
+ "<|23.02|>": 51516,
804
+ "<|23.04|>": 51517,
805
+ "<|23.06|>": 51518,
806
+ "<|23.08|>": 51519,
807
+ "<|23.10|>": 51520,
808
+ "<|23.12|>": 51521,
809
+ "<|23.14|>": 51522,
810
+ "<|23.16|>": 51523,
811
+ "<|23.18|>": 51524,
812
+ "<|23.20|>": 51525,
813
+ "<|23.22|>": 51526,
814
+ "<|23.24|>": 51527,
815
+ "<|23.26|>": 51528,
816
+ "<|23.28|>": 51529,
817
+ "<|23.30|>": 51530,
818
+ "<|23.32|>": 51531,
819
+ "<|23.34|>": 51532,
820
+ "<|23.36|>": 51533,
821
+ "<|23.38|>": 51534,
822
+ "<|23.40|>": 51535,
823
+ "<|23.42|>": 51536,
824
+ "<|23.44|>": 51537,
825
+ "<|23.46|>": 51538,
826
+ "<|23.48|>": 51539,
827
+ "<|23.50|>": 51540,
828
+ "<|23.52|>": 51541,
829
+ "<|23.54|>": 51542,
830
+ "<|23.56|>": 51543,
831
+ "<|23.58|>": 51544,
832
+ "<|23.60|>": 51545,
833
+ "<|23.62|>": 51546,
834
+ "<|23.64|>": 51547,
835
+ "<|23.66|>": 51548,
836
+ "<|23.68|>": 51549,
837
+ "<|23.70|>": 51550,
838
+ "<|23.72|>": 51551,
839
+ "<|23.74|>": 51552,
840
+ "<|23.76|>": 51553,
841
+ "<|23.78|>": 51554,
842
+ "<|23.80|>": 51555,
843
+ "<|23.82|>": 51556,
844
+ "<|23.84|>": 51557,
845
+ "<|23.86|>": 51558,
846
+ "<|23.88|>": 51559,
847
+ "<|23.90|>": 51560,
848
+ "<|23.92|>": 51561,
849
+ "<|23.94|>": 51562,
850
+ "<|23.96|>": 51563,
851
+ "<|23.98|>": 51564,
852
+ "<|24.00|>": 51565,
853
+ "<|24.02|>": 51566,
854
+ "<|24.04|>": 51567,
855
+ "<|24.06|>": 51568,
856
+ "<|24.08|>": 51569,
857
+ "<|24.10|>": 51570,
858
+ "<|24.12|>": 51571,
859
+ "<|24.14|>": 51572,
860
+ "<|24.16|>": 51573,
861
+ "<|24.18|>": 51574,
862
+ "<|24.20|>": 51575,
863
+ "<|24.22|>": 51576,
864
+ "<|24.24|>": 51577,
865
+ "<|24.26|>": 51578,
866
+ "<|24.28|>": 51579,
867
+ "<|24.30|>": 51580,
868
+ "<|24.32|>": 51581,
869
+ "<|24.34|>": 51582,
870
+ "<|24.36|>": 51583,
871
+ "<|24.38|>": 51584,
872
+ "<|24.40|>": 51585,
873
+ "<|24.42|>": 51586,
874
+ "<|24.44|>": 51587,
875
+ "<|24.46|>": 51588,
876
+ "<|24.48|>": 51589,
877
+ "<|24.50|>": 51590,
878
+ "<|24.52|>": 51591,
879
+ "<|24.54|>": 51592,
880
+ "<|24.56|>": 51593,
881
+ "<|24.58|>": 51594,
882
+ "<|24.60|>": 51595,
883
+ "<|24.62|>": 51596,
884
+ "<|24.64|>": 51597,
885
+ "<|24.66|>": 51598,
886
+ "<|24.68|>": 51599,
887
+ "<|24.70|>": 51600,
888
+ "<|24.72|>": 51601,
889
+ "<|24.74|>": 51602,
890
+ "<|24.76|>": 51603,
891
+ "<|24.78|>": 51604,
892
+ "<|24.80|>": 51605,
893
+ "<|24.82|>": 51606,
894
+ "<|24.84|>": 51607,
895
+ "<|24.86|>": 51608,
896
+ "<|24.88|>": 51609,
897
+ "<|24.90|>": 51610,
898
+ "<|24.92|>": 51611,
899
+ "<|24.94|>": 51612,
900
+ "<|24.96|>": 51613,
901
+ "<|24.98|>": 51614,
902
+ "<|25.00|>": 51615,
903
+ "<|25.02|>": 51616,
904
+ "<|25.04|>": 51617,
905
+ "<|25.06|>": 51618,
906
+ "<|25.08|>": 51619,
907
+ "<|25.10|>": 51620,
908
+ "<|25.12|>": 51621,
909
+ "<|25.14|>": 51622,
910
+ "<|25.16|>": 51623,
911
+ "<|25.18|>": 51624,
912
+ "<|25.20|>": 51625,
913
+ "<|25.22|>": 51626,
914
+ "<|25.24|>": 51627,
915
+ "<|25.26|>": 51628,
916
+ "<|25.28|>": 51629,
917
+ "<|25.30|>": 51630,
918
+ "<|25.32|>": 51631,
919
+ "<|25.34|>": 51632,
920
+ "<|25.36|>": 51633,
921
+ "<|25.38|>": 51634,
922
+ "<|25.40|>": 51635,
923
+ "<|25.42|>": 51636,
924
+ "<|25.44|>": 51637,
925
+ "<|25.46|>": 51638,
926
+ "<|25.48|>": 51639,
927
+ "<|25.50|>": 51640,
928
+ "<|25.52|>": 51641,
929
+ "<|25.54|>": 51642,
930
+ "<|25.56|>": 51643,
931
+ "<|25.58|>": 51644,
932
+ "<|25.60|>": 51645,
933
+ "<|25.62|>": 51646,
934
+ "<|25.64|>": 51647,
935
+ "<|25.66|>": 51648,
936
+ "<|25.68|>": 51649,
937
+ "<|25.70|>": 51650,
938
+ "<|25.72|>": 51651,
939
+ "<|25.74|>": 51652,
940
+ "<|25.76|>": 51653,
941
+ "<|25.78|>": 51654,
942
+ "<|25.80|>": 51655,
943
+ "<|25.82|>": 51656,
944
+ "<|25.84|>": 51657,
945
+ "<|25.86|>": 51658,
946
+ "<|25.88|>": 51659,
947
+ "<|25.90|>": 51660,
948
+ "<|25.92|>": 51661,
949
+ "<|25.94|>": 51662,
950
+ "<|25.96|>": 51663,
951
+ "<|25.98|>": 51664,
952
+ "<|26.00|>": 51665,
953
+ "<|26.02|>": 51666,
954
+ "<|26.04|>": 51667,
955
+ "<|26.06|>": 51668,
956
+ "<|26.08|>": 51669,
957
+ "<|26.10|>": 51670,
958
+ "<|26.12|>": 51671,
959
+ "<|26.14|>": 51672,
960
+ "<|26.16|>": 51673,
961
+ "<|26.18|>": 51674,
962
+ "<|26.20|>": 51675,
963
+ "<|26.22|>": 51676,
964
+ "<|26.24|>": 51677,
965
+ "<|26.26|>": 51678,
966
+ "<|26.28|>": 51679,
967
+ "<|26.30|>": 51680,
968
+ "<|26.32|>": 51681,
969
+ "<|26.34|>": 51682,
970
+ "<|26.36|>": 51683,
971
+ "<|26.38|>": 51684,
972
+ "<|26.40|>": 51685,
973
+ "<|26.42|>": 51686,
974
+ "<|26.44|>": 51687,
975
+ "<|26.46|>": 51688,
976
+ "<|26.48|>": 51689,
977
+ "<|26.50|>": 51690,
978
+ "<|26.52|>": 51691,
979
+ "<|26.54|>": 51692,
980
+ "<|26.56|>": 51693,
981
+ "<|26.58|>": 51694,
982
+ "<|26.60|>": 51695,
983
+ "<|26.62|>": 51696,
984
+ "<|26.64|>": 51697,
985
+ "<|26.66|>": 51698,
986
+ "<|26.68|>": 51699,
987
+ "<|26.70|>": 51700,
988
+ "<|26.72|>": 51701,
989
+ "<|26.74|>": 51702,
990
+ "<|26.76|>": 51703,
991
+ "<|26.78|>": 51704,
992
+ "<|26.80|>": 51705,
993
+ "<|26.82|>": 51706,
994
+ "<|26.84|>": 51707,
995
+ "<|26.86|>": 51708,
996
+ "<|26.88|>": 51709,
997
+ "<|26.90|>": 51710,
998
+ "<|26.92|>": 51711,
999
+ "<|26.94|>": 51712,
1000
+ "<|26.96|>": 51713,
1001
+ "<|26.98|>": 51714,
1002
+ "<|27.00|>": 51715,
1003
+ "<|27.02|>": 51716,
1004
+ "<|27.04|>": 51717,
1005
+ "<|27.06|>": 51718,
1006
+ "<|27.08|>": 51719,
1007
+ "<|27.10|>": 51720,
1008
+ "<|27.12|>": 51721,
1009
+ "<|27.14|>": 51722,
1010
+ "<|27.16|>": 51723,
1011
+ "<|27.18|>": 51724,
1012
+ "<|27.20|>": 51725,
1013
+ "<|27.22|>": 51726,
1014
+ "<|27.24|>": 51727,
1015
+ "<|27.26|>": 51728,
1016
+ "<|27.28|>": 51729,
1017
+ "<|27.30|>": 51730,
1018
+ "<|27.32|>": 51731,
1019
+ "<|27.34|>": 51732,
1020
+ "<|27.36|>": 51733,
1021
+ "<|27.38|>": 51734,
1022
+ "<|27.40|>": 51735,
1023
+ "<|27.42|>": 51736,
1024
+ "<|27.44|>": 51737,
1025
+ "<|27.46|>": 51738,
1026
+ "<|27.48|>": 51739,
1027
+ "<|27.50|>": 51740,
1028
+ "<|27.52|>": 51741,
1029
+ "<|27.54|>": 51742,
1030
+ "<|27.56|>": 51743,
1031
+ "<|27.58|>": 51744,
1032
+ "<|27.60|>": 51745,
1033
+ "<|27.62|>": 51746,
1034
+ "<|27.64|>": 51747,
1035
+ "<|27.66|>": 51748,
1036
+ "<|27.68|>": 51749,
1037
+ "<|27.70|>": 51750,
1038
+ "<|27.72|>": 51751,
1039
+ "<|27.74|>": 51752,
1040
+ "<|27.76|>": 51753,
1041
+ "<|27.78|>": 51754,
1042
+ "<|27.80|>": 51755,
1043
+ "<|27.82|>": 51756,
1044
+ "<|27.84|>": 51757,
1045
+ "<|27.86|>": 51758,
1046
+ "<|27.88|>": 51759,
1047
+ "<|27.90|>": 51760,
1048
+ "<|27.92|>": 51761,
1049
+ "<|27.94|>": 51762,
1050
+ "<|27.96|>": 51763,
1051
+ "<|27.98|>": 51764,
1052
+ "<|28.00|>": 51765,
1053
+ "<|28.02|>": 51766,
1054
+ "<|28.04|>": 51767,
1055
+ "<|28.06|>": 51768,
1056
+ "<|28.08|>": 51769,
1057
+ "<|28.10|>": 51770,
1058
+ "<|28.12|>": 51771,
1059
+ "<|28.14|>": 51772,
1060
+ "<|28.16|>": 51773,
1061
+ "<|28.18|>": 51774,
1062
+ "<|28.20|>": 51775,
1063
+ "<|28.22|>": 51776,
1064
+ "<|28.24|>": 51777,
1065
+ "<|28.26|>": 51778,
1066
+ "<|28.28|>": 51779,
1067
+ "<|28.30|>": 51780,
1068
+ "<|28.32|>": 51781,
1069
+ "<|28.34|>": 51782,
1070
+ "<|28.36|>": 51783,
1071
+ "<|28.38|>": 51784,
1072
+ "<|28.40|>": 51785,
1073
+ "<|28.42|>": 51786,
1074
+ "<|28.44|>": 51787,
1075
+ "<|28.46|>": 51788,
1076
+ "<|28.48|>": 51789,
1077
+ "<|28.50|>": 51790,
1078
+ "<|28.52|>": 51791,
1079
+ "<|28.54|>": 51792,
1080
+ "<|28.56|>": 51793,
1081
+ "<|28.58|>": 51794,
1082
+ "<|28.60|>": 51795,
1083
+ "<|28.62|>": 51796,
1084
+ "<|28.64|>": 51797,
1085
+ "<|28.66|>": 51798,
1086
+ "<|28.68|>": 51799,
1087
+ "<|28.70|>": 51800,
1088
+ "<|28.72|>": 51801,
1089
+ "<|28.74|>": 51802,
1090
+ "<|28.76|>": 51803,
1091
+ "<|28.78|>": 51804,
1092
+ "<|28.80|>": 51805,
1093
+ "<|28.82|>": 51806,
1094
+ "<|28.84|>": 51807,
1095
+ "<|28.86|>": 51808,
1096
+ "<|28.88|>": 51809,
1097
+ "<|28.90|>": 51810,
1098
+ "<|28.92|>": 51811,
1099
+ "<|28.94|>": 51812,
1100
+ "<|28.96|>": 51813,
1101
+ "<|28.98|>": 51814,
1102
+ "<|29.00|>": 51815,
1103
+ "<|29.02|>": 51816,
1104
+ "<|29.04|>": 51817,
1105
+ "<|29.06|>": 51818,
1106
+ "<|29.08|>": 51819,
1107
+ "<|29.10|>": 51820,
1108
+ "<|29.12|>": 51821,
1109
+ "<|29.14|>": 51822,
1110
+ "<|29.16|>": 51823,
1111
+ "<|29.18|>": 51824,
1112
+ "<|29.20|>": 51825,
1113
+ "<|29.22|>": 51826,
1114
+ "<|29.24|>": 51827,
1115
+ "<|29.26|>": 51828,
1116
+ "<|29.28|>": 51829,
1117
+ "<|29.30|>": 51830,
1118
+ "<|29.32|>": 51831,
1119
+ "<|29.34|>": 51832,
1120
+ "<|29.36|>": 51833,
1121
+ "<|29.38|>": 51834,
1122
+ "<|29.40|>": 51835,
1123
+ "<|29.42|>": 51836,
1124
+ "<|29.44|>": 51837,
1125
+ "<|29.46|>": 51838,
1126
+ "<|29.48|>": 51839,
1127
+ "<|29.50|>": 51840,
1128
+ "<|29.52|>": 51841,
1129
+ "<|29.54|>": 51842,
1130
+ "<|29.56|>": 51843,
1131
+ "<|29.58|>": 51844,
1132
+ "<|29.60|>": 51845,
1133
+ "<|29.62|>": 51846,
1134
+ "<|29.64|>": 51847,
1135
+ "<|29.66|>": 51848,
1136
+ "<|29.68|>": 51849,
1137
+ "<|29.70|>": 51850,
1138
+ "<|29.72|>": 51851,
1139
+ "<|29.74|>": 51852,
1140
+ "<|29.76|>": 51853,
1141
+ "<|29.78|>": 51854,
1142
+ "<|29.80|>": 51855,
1143
+ "<|29.82|>": 51856,
1144
+ "<|29.84|>": 51857,
1145
+ "<|29.86|>": 51858,
1146
+ "<|29.88|>": 51859,
1147
+ "<|29.90|>": 51860,
1148
+ "<|29.92|>": 51861,
1149
+ "<|29.94|>": 51862,
1150
+ "<|29.96|>": 51863,
1151
+ "<|29.98|>": 51864,
1152
+ "<|3.00|>": 50515,
1153
+ "<|3.02|>": 50516,
1154
+ "<|3.04|>": 50517,
1155
+ "<|3.06|>": 50518,
1156
+ "<|3.08|>": 50519,
1157
+ "<|3.10|>": 50520,
1158
+ "<|3.12|>": 50521,
1159
+ "<|3.14|>": 50522,
1160
+ "<|3.16|>": 50523,
1161
+ "<|3.18|>": 50524,
1162
+ "<|3.20|>": 50525,
1163
+ "<|3.22|>": 50526,
1164
+ "<|3.24|>": 50527,
1165
+ "<|3.26|>": 50528,
1166
+ "<|3.28|>": 50529,
1167
+ "<|3.30|>": 50530,
1168
+ "<|3.32|>": 50531,
1169
+ "<|3.34|>": 50532,
1170
+ "<|3.36|>": 50533,
1171
+ "<|3.38|>": 50534,
1172
+ "<|3.40|>": 50535,
1173
+ "<|3.42|>": 50536,
1174
+ "<|3.44|>": 50537,
1175
+ "<|3.46|>": 50538,
1176
+ "<|3.48|>": 50539,
1177
+ "<|3.50|>": 50540,
1178
+ "<|3.52|>": 50541,
1179
+ "<|3.54|>": 50542,
1180
+ "<|3.56|>": 50543,
1181
+ "<|3.58|>": 50544,
1182
+ "<|3.60|>": 50545,
1183
+ "<|3.62|>": 50546,
1184
+ "<|3.64|>": 50547,
1185
+ "<|3.66|>": 50548,
1186
+ "<|3.68|>": 50549,
1187
+ "<|3.70|>": 50550,
1188
+ "<|3.72|>": 50551,
1189
+ "<|3.74|>": 50552,
1190
+ "<|3.76|>": 50553,
1191
+ "<|3.78|>": 50554,
1192
+ "<|3.80|>": 50555,
1193
+ "<|3.82|>": 50556,
1194
+ "<|3.84|>": 50557,
1195
+ "<|3.86|>": 50558,
1196
+ "<|3.88|>": 50559,
1197
+ "<|3.90|>": 50560,
1198
+ "<|3.92|>": 50561,
1199
+ "<|3.94|>": 50562,
1200
+ "<|3.96|>": 50563,
1201
+ "<|3.98|>": 50564,
1202
+ "<|30.00|>": 51865,
1203
+ "<|4.00|>": 50565,
1204
+ "<|4.02|>": 50566,
1205
+ "<|4.04|>": 50567,
1206
+ "<|4.06|>": 50568,
1207
+ "<|4.08|>": 50569,
1208
+ "<|4.10|>": 50570,
1209
+ "<|4.12|>": 50571,
1210
+ "<|4.14|>": 50572,
1211
+ "<|4.16|>": 50573,
1212
+ "<|4.18|>": 50574,
1213
+ "<|4.20|>": 50575,
1214
+ "<|4.22|>": 50576,
1215
+ "<|4.24|>": 50577,
1216
+ "<|4.26|>": 50578,
1217
+ "<|4.28|>": 50579,
1218
+ "<|4.30|>": 50580,
1219
+ "<|4.32|>": 50581,
1220
+ "<|4.34|>": 50582,
1221
+ "<|4.36|>": 50583,
1222
+ "<|4.38|>": 50584,
1223
+ "<|4.40|>": 50585,
1224
+ "<|4.42|>": 50586,
1225
+ "<|4.44|>": 50587,
1226
+ "<|4.46|>": 50588,
1227
+ "<|4.48|>": 50589,
1228
+ "<|4.50|>": 50590,
1229
+ "<|4.52|>": 50591,
1230
+ "<|4.54|>": 50592,
1231
+ "<|4.56|>": 50593,
1232
+ "<|4.58|>": 50594,
1233
+ "<|4.60|>": 50595,
1234
+ "<|4.62|>": 50596,
1235
+ "<|4.64|>": 50597,
1236
+ "<|4.66|>": 50598,
1237
+ "<|4.68|>": 50599,
1238
+ "<|4.70|>": 50600,
1239
+ "<|4.72|>": 50601,
1240
+ "<|4.74|>": 50602,
1241
+ "<|4.76|>": 50603,
1242
+ "<|4.78|>": 50604,
1243
+ "<|4.80|>": 50605,
1244
+ "<|4.82|>": 50606,
1245
+ "<|4.84|>": 50607,
1246
+ "<|4.86|>": 50608,
1247
+ "<|4.88|>": 50609,
1248
+ "<|4.90|>": 50610,
1249
+ "<|4.92|>": 50611,
1250
+ "<|4.94|>": 50612,
1251
+ "<|4.96|>": 50613,
1252
+ "<|4.98|>": 50614,
1253
+ "<|5.00|>": 50615,
1254
+ "<|5.02|>": 50616,
1255
+ "<|5.04|>": 50617,
1256
+ "<|5.06|>": 50618,
1257
+ "<|5.08|>": 50619,
1258
+ "<|5.10|>": 50620,
1259
+ "<|5.12|>": 50621,
1260
+ "<|5.14|>": 50622,
1261
+ "<|5.16|>": 50623,
1262
+ "<|5.18|>": 50624,
1263
+ "<|5.20|>": 50625,
1264
+ "<|5.22|>": 50626,
1265
+ "<|5.24|>": 50627,
1266
+ "<|5.26|>": 50628,
1267
+ "<|5.28|>": 50629,
1268
+ "<|5.30|>": 50630,
1269
+ "<|5.32|>": 50631,
1270
+ "<|5.34|>": 50632,
1271
+ "<|5.36|>": 50633,
1272
+ "<|5.38|>": 50634,
1273
+ "<|5.40|>": 50635,
1274
+ "<|5.42|>": 50636,
1275
+ "<|5.44|>": 50637,
1276
+ "<|5.46|>": 50638,
1277
+ "<|5.48|>": 50639,
1278
+ "<|5.50|>": 50640,
1279
+ "<|5.52|>": 50641,
1280
+ "<|5.54|>": 50642,
1281
+ "<|5.56|>": 50643,
1282
+ "<|5.58|>": 50644,
1283
+ "<|5.60|>": 50645,
1284
+ "<|5.62|>": 50646,
1285
+ "<|5.64|>": 50647,
1286
+ "<|5.66|>": 50648,
1287
+ "<|5.68|>": 50649,
1288
+ "<|5.70|>": 50650,
1289
+ "<|5.72|>": 50651,
1290
+ "<|5.74|>": 50652,
1291
+ "<|5.76|>": 50653,
1292
+ "<|5.78|>": 50654,
1293
+ "<|5.80|>": 50655,
1294
+ "<|5.82|>": 50656,
1295
+ "<|5.84|>": 50657,
1296
+ "<|5.86|>": 50658,
1297
+ "<|5.88|>": 50659,
1298
+ "<|5.90|>": 50660,
1299
+ "<|5.92|>": 50661,
1300
+ "<|5.94|>": 50662,
1301
+ "<|5.96|>": 50663,
1302
+ "<|5.98|>": 50664,
1303
+ "<|6.00|>": 50665,
1304
+ "<|6.02|>": 50666,
1305
+ "<|6.04|>": 50667,
1306
+ "<|6.06|>": 50668,
1307
+ "<|6.08|>": 50669,
1308
+ "<|6.10|>": 50670,
1309
+ "<|6.12|>": 50671,
1310
+ "<|6.14|>": 50672,
1311
+ "<|6.16|>": 50673,
1312
+ "<|6.18|>": 50674,
1313
+ "<|6.20|>": 50675,
1314
+ "<|6.22|>": 50676,
1315
+ "<|6.24|>": 50677,
1316
+ "<|6.26|>": 50678,
1317
+ "<|6.28|>": 50679,
1318
+ "<|6.30|>": 50680,
1319
+ "<|6.32|>": 50681,
1320
+ "<|6.34|>": 50682,
1321
+ "<|6.36|>": 50683,
1322
+ "<|6.38|>": 50684,
1323
+ "<|6.40|>": 50685,
1324
+ "<|6.42|>": 50686,
1325
+ "<|6.44|>": 50687,
1326
+ "<|6.46|>": 50688,
1327
+ "<|6.48|>": 50689,
1328
+ "<|6.50|>": 50690,
1329
+ "<|6.52|>": 50691,
1330
+ "<|6.54|>": 50692,
1331
+ "<|6.56|>": 50693,
1332
+ "<|6.58|>": 50694,
1333
+ "<|6.60|>": 50695,
1334
+ "<|6.62|>": 50696,
1335
+ "<|6.64|>": 50697,
1336
+ "<|6.66|>": 50698,
1337
+ "<|6.68|>": 50699,
1338
+ "<|6.70|>": 50700,
1339
+ "<|6.72|>": 50701,
1340
+ "<|6.74|>": 50702,
1341
+ "<|6.76|>": 50703,
1342
+ "<|6.78|>": 50704,
1343
+ "<|6.80|>": 50705,
1344
+ "<|6.82|>": 50706,
1345
+ "<|6.84|>": 50707,
1346
+ "<|6.86|>": 50708,
1347
+ "<|6.88|>": 50709,
1348
+ "<|6.90|>": 50710,
1349
+ "<|6.92|>": 50711,
1350
+ "<|6.94|>": 50712,
1351
+ "<|6.96|>": 50713,
1352
+ "<|6.98|>": 50714,
1353
+ "<|7.00|>": 50715,
1354
+ "<|7.02|>": 50716,
1355
+ "<|7.04|>": 50717,
1356
+ "<|7.06|>": 50718,
1357
+ "<|7.08|>": 50719,
1358
+ "<|7.10|>": 50720,
1359
+ "<|7.12|>": 50721,
1360
+ "<|7.14|>": 50722,
1361
+ "<|7.16|>": 50723,
1362
+ "<|7.18|>": 50724,
1363
+ "<|7.20|>": 50725,
1364
+ "<|7.22|>": 50726,
1365
+ "<|7.24|>": 50727,
1366
+ "<|7.26|>": 50728,
1367
+ "<|7.28|>": 50729,
1368
+ "<|7.30|>": 50730,
1369
+ "<|7.32|>": 50731,
1370
+ "<|7.34|>": 50732,
1371
+ "<|7.36|>": 50733,
1372
+ "<|7.38|>": 50734,
1373
+ "<|7.40|>": 50735,
1374
+ "<|7.42|>": 50736,
1375
+ "<|7.44|>": 50737,
1376
+ "<|7.46|>": 50738,
1377
+ "<|7.48|>": 50739,
1378
+ "<|7.50|>": 50740,
1379
+ "<|7.52|>": 50741,
1380
+ "<|7.54|>": 50742,
1381
+ "<|7.56|>": 50743,
1382
+ "<|7.58|>": 50744,
1383
+ "<|7.60|>": 50745,
1384
+ "<|7.62|>": 50746,
1385
+ "<|7.64|>": 50747,
1386
+ "<|7.66|>": 50748,
1387
+ "<|7.68|>": 50749,
1388
+ "<|7.70|>": 50750,
1389
+ "<|7.72|>": 50751,
1390
+ "<|7.74|>": 50752,
1391
+ "<|7.76|>": 50753,
1392
+ "<|7.78|>": 50754,
1393
+ "<|7.80|>": 50755,
1394
+ "<|7.82|>": 50756,
1395
+ "<|7.84|>": 50757,
1396
+ "<|7.86|>": 50758,
1397
+ "<|7.88|>": 50759,
1398
+ "<|7.90|>": 50760,
1399
+ "<|7.92|>": 50761,
1400
+ "<|7.94|>": 50762,
1401
+ "<|7.96|>": 50763,
1402
+ "<|7.98|>": 50764,
1403
+ "<|8.00|>": 50765,
1404
+ "<|8.02|>": 50766,
1405
+ "<|8.04|>": 50767,
1406
+ "<|8.06|>": 50768,
1407
+ "<|8.08|>": 50769,
1408
+ "<|8.10|>": 50770,
1409
+ "<|8.12|>": 50771,
1410
+ "<|8.14|>": 50772,
1411
+ "<|8.16|>": 50773,
1412
+ "<|8.18|>": 50774,
1413
+ "<|8.20|>": 50775,
1414
+ "<|8.22|>": 50776,
1415
+ "<|8.24|>": 50777,
1416
+ "<|8.26|>": 50778,
1417
+ "<|8.28|>": 50779,
1418
+ "<|8.30|>": 50780,
1419
+ "<|8.32|>": 50781,
1420
+ "<|8.34|>": 50782,
1421
+ "<|8.36|>": 50783,
1422
+ "<|8.38|>": 50784,
1423
+ "<|8.40|>": 50785,
1424
+ "<|8.42|>": 50786,
1425
+ "<|8.44|>": 50787,
1426
+ "<|8.46|>": 50788,
1427
+ "<|8.48|>": 50789,
1428
+ "<|8.50|>": 50790,
1429
+ "<|8.52|>": 50791,
1430
+ "<|8.54|>": 50792,
1431
+ "<|8.56|>": 50793,
1432
+ "<|8.58|>": 50794,
1433
+ "<|8.60|>": 50795,
1434
+ "<|8.62|>": 50796,
1435
+ "<|8.64|>": 50797,
1436
+ "<|8.66|>": 50798,
1437
+ "<|8.68|>": 50799,
1438
+ "<|8.70|>": 50800,
1439
+ "<|8.72|>": 50801,
1440
+ "<|8.74|>": 50802,
1441
+ "<|8.76|>": 50803,
1442
+ "<|8.78|>": 50804,
1443
+ "<|8.80|>": 50805,
1444
+ "<|8.82|>": 50806,
1445
+ "<|8.84|>": 50807,
1446
+ "<|8.86|>": 50808,
1447
+ "<|8.88|>": 50809,
1448
+ "<|8.90|>": 50810,
1449
+ "<|8.92|>": 50811,
1450
+ "<|8.94|>": 50812,
1451
+ "<|8.96|>": 50813,
1452
+ "<|8.98|>": 50814,
1453
+ "<|9.00|>": 50815,
1454
+ "<|9.02|>": 50816,
1455
+ "<|9.04|>": 50817,
1456
+ "<|9.06|>": 50818,
1457
+ "<|9.08|>": 50819,
1458
+ "<|9.10|>": 50820,
1459
+ "<|9.12|>": 50821,
1460
+ "<|9.14|>": 50822,
1461
+ "<|9.16|>": 50823,
1462
+ "<|9.18|>": 50824,
1463
+ "<|9.20|>": 50825,
1464
+ "<|9.22|>": 50826,
1465
+ "<|9.24|>": 50827,
1466
+ "<|9.26|>": 50828,
1467
+ "<|9.28|>": 50829,
1468
+ "<|9.30|>": 50830,
1469
+ "<|9.32|>": 50831,
1470
+ "<|9.34|>": 50832,
1471
+ "<|9.36|>": 50833,
1472
+ "<|9.38|>": 50834,
1473
+ "<|9.40|>": 50835,
1474
+ "<|9.42|>": 50836,
1475
+ "<|9.44|>": 50837,
1476
+ "<|9.46|>": 50838,
1477
+ "<|9.48|>": 50839,
1478
+ "<|9.50|>": 50840,
1479
+ "<|9.52|>": 50841,
1480
+ "<|9.54|>": 50842,
1481
+ "<|9.56|>": 50843,
1482
+ "<|9.58|>": 50844,
1483
+ "<|9.60|>": 50845,
1484
+ "<|9.62|>": 50846,
1485
+ "<|9.64|>": 50847,
1486
+ "<|9.66|>": 50848,
1487
+ "<|9.68|>": 50849,
1488
+ "<|9.70|>": 50850,
1489
+ "<|9.72|>": 50851,
1490
+ "<|9.74|>": 50852,
1491
+ "<|9.76|>": 50853,
1492
+ "<|9.78|>": 50854,
1493
+ "<|9.80|>": 50855,
1494
+ "<|9.82|>": 50856,
1495
+ "<|9.84|>": 50857,
1496
+ "<|9.86|>": 50858,
1497
+ "<|9.88|>": 50859,
1498
+ "<|9.90|>": 50860,
1499
+ "<|9.92|>": 50861,
1500
+ "<|9.94|>": 50862,
1501
+ "<|9.96|>": 50863,
1502
+ "<|9.98|>": 50864,
1503
+ "<|af|>": 50327,
1504
+ "<|am|>": 50334,
1505
+ "<|ar|>": 50272,
1506
+ "<|as|>": 50350,
1507
+ "<|az|>": 50304,
1508
+ "<|ba|>": 50355,
1509
+ "<|be|>": 50330,
1510
+ "<|bg|>": 50292,
1511
+ "<|bn|>": 50302,
1512
+ "<|bo|>": 50347,
1513
+ "<|br|>": 50309,
1514
+ "<|bs|>": 50315,
1515
+ "<|ca|>": 50270,
1516
+ "<|cs|>": 50283,
1517
+ "<|cy|>": 50297,
1518
+ "<|da|>": 50285,
1519
+ "<|de|>": 50261,
1520
+ "<|el|>": 50281,
1521
+ "<|endoftext|>": 50257,
1522
+ "<|en|>": 50259,
1523
+ "<|es|>": 50262,
1524
+ "<|et|>": 50307,
1525
+ "<|eu|>": 50310,
1526
+ "<|fa|>": 50300,
1527
+ "<|fi|>": 50277,
1528
+ "<|fo|>": 50338,
1529
+ "<|fr|>": 50265,
1530
+ "<|gl|>": 50319,
1531
+ "<|gu|>": 50333,
1532
+ "<|haw|>": 50352,
1533
+ "<|ha|>": 50354,
1534
+ "<|he|>": 50279,
1535
+ "<|hi|>": 50276,
1536
+ "<|hr|>": 50291,
1537
+ "<|ht|>": 50339,
1538
+ "<|hu|>": 50286,
1539
+ "<|hy|>": 50312,
1540
+ "<|id|>": 50275,
1541
+ "<|is|>": 50311,
1542
+ "<|it|>": 50274,
1543
+ "<|ja|>": 50266,
1544
+ "<|jw|>": 50356,
1545
+ "<|ka|>": 50329,
1546
+ "<|kk|>": 50316,
1547
+ "<|km|>": 50323,
1548
+ "<|kn|>": 50306,
1549
+ "<|ko|>": 50264,
1550
+ "<|la|>": 50294,
1551
+ "<|lb|>": 50345,
1552
+ "<|ln|>": 50353,
1553
+ "<|lo|>": 50336,
1554
+ "<|lt|>": 50293,
1555
+ "<|lv|>": 50301,
1556
+ "<|mg|>": 50349,
1557
+ "<|mi|>": 50295,
1558
+ "<|mk|>": 50308,
1559
+ "<|ml|>": 50296,
1560
+ "<|mn|>": 50314,
1561
+ "<|mr|>": 50320,
1562
+ "<|ms|>": 50282,
1563
+ "<|mt|>": 50343,
1564
+ "<|my|>": 50346,
1565
+ "<|ne|>": 50313,
1566
+ "<|nl|>": 50271,
1567
+ "<|nn|>": 50342,
1568
+ "<|nospeech|>": 50363,
1569
+ "<|notimestamps|>": 50364,
1570
+ "<|no|>": 50288,
1571
+ "<|oc|>": 50328,
1572
+ "<|pa|>": 50321,
1573
+ "<|pl|>": 50269,
1574
+ "<|ps|>": 50340,
1575
+ "<|pt|>": 50267,
1576
+ "<|ro|>": 50284,
1577
+ "<|ru|>": 50263,
1578
+ "<|sa|>": 50344,
1579
+ "<|sd|>": 50332,
1580
+ "<|si|>": 50322,
1581
+ "<|sk|>": 50298,
1582
+ "<|sl|>": 50305,
1583
+ "<|sn|>": 50324,
1584
+ "<|so|>": 50326,
1585
+ "<|sq|>": 50317,
1586
+ "<|sr|>": 50303,
1587
+ "<|startoflm|>": 50361,
1588
+ "<|startofprev|>": 50362,
1589
+ "<|startoftranscript|>": 50258,
1590
+ "<|su|>": 50357,
1591
+ "<|sv|>": 50273,
1592
+ "<|sw|>": 50318,
1593
+ "<|ta|>": 50287,
1594
+ "<|te|>": 50299,
1595
+ "<|tg|>": 50331,
1596
+ "<|th|>": 50289,
1597
+ "<|tk|>": 50341,
1598
+ "<|tl|>": 50348,
1599
+ "<|transcribe|>": 50360,
1600
+ "<|translate|>": 50359,
1601
+ "<|tr|>": 50268,
1602
+ "<|tt|>": 50351,
1603
+ "<|uk|>": 50280,
1604
+ "<|ur|>": 50290,
1605
+ "<|uz|>": 50337,
1606
+ "<|vi|>": 50278,
1607
+ "<|yi|>": 50335,
1608
+ "<|yo|>": 50325,
1609
+ "<|yue|>": 50358,
1610
+ "<|zh|>": 50260
1611
+ }
config.json ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alignment_heads": [
3
+ [
4
+ 1,
5
+ 0
6
+ ],
7
+ [
8
+ 1,
9
+ 1
10
+ ],
11
+ [
12
+ 1,
13
+ 2
14
+ ],
15
+ [
16
+ 1,
17
+ 3
18
+ ],
19
+ [
20
+ 1,
21
+ 4
22
+ ],
23
+ [
24
+ 1,
25
+ 5
26
+ ],
27
+ [
28
+ 1,
29
+ 6
30
+ ],
31
+ [
32
+ 1,
33
+ 7
34
+ ],
35
+ [
36
+ 1,
37
+ 8
38
+ ],
39
+ [
40
+ 1,
41
+ 9
42
+ ],
43
+ [
44
+ 1,
45
+ 10
46
+ ],
47
+ [
48
+ 1,
49
+ 11
50
+ ],
51
+ [
52
+ 1,
53
+ 12
54
+ ],
55
+ [
56
+ 1,
57
+ 13
58
+ ],
59
+ [
60
+ 1,
61
+ 14
62
+ ],
63
+ [
64
+ 1,
65
+ 15
66
+ ],
67
+ [
68
+ 1,
69
+ 16
70
+ ],
71
+ [
72
+ 1,
73
+ 17
74
+ ],
75
+ [
76
+ 1,
77
+ 18
78
+ ],
79
+ [
80
+ 1,
81
+ 19
82
+ ]
83
+ ],
84
+ "lang_ids": [
85
+ 50259,
86
+ 50260,
87
+ 50261,
88
+ 50262,
89
+ 50263,
90
+ 50264,
91
+ 50265,
92
+ 50266,
93
+ 50267,
94
+ 50268,
95
+ 50269,
96
+ 50270,
97
+ 50271,
98
+ 50272,
99
+ 50273,
100
+ 50274,
101
+ 50275,
102
+ 50276,
103
+ 50277,
104
+ 50278,
105
+ 50279,
106
+ 50280,
107
+ 50281,
108
+ 50282,
109
+ 50283,
110
+ 50284,
111
+ 50285,
112
+ 50286,
113
+ 50287,
114
+ 50288,
115
+ 50289,
116
+ 50290,
117
+ 50291,
118
+ 50292,
119
+ 50293,
120
+ 50294,
121
+ 50295,
122
+ 50296,
123
+ 50297,
124
+ 50298,
125
+ 50299,
126
+ 50300,
127
+ 50301,
128
+ 50302,
129
+ 50303,
130
+ 50304,
131
+ 50305,
132
+ 50306,
133
+ 50307,
134
+ 50308,
135
+ 50309,
136
+ 50310,
137
+ 50311,
138
+ 50312,
139
+ 50313,
140
+ 50314,
141
+ 50315,
142
+ 50316,
143
+ 50317,
144
+ 50318,
145
+ 50319,
146
+ 50320,
147
+ 50321,
148
+ 50322,
149
+ 50323,
150
+ 50324,
151
+ 50325,
152
+ 50326,
153
+ 50327,
154
+ 50328,
155
+ 50329,
156
+ 50330,
157
+ 50331,
158
+ 50332,
159
+ 50333,
160
+ 50334,
161
+ 50335,
162
+ 50336,
163
+ 50337,
164
+ 50338,
165
+ 50339,
166
+ 50340,
167
+ 50341,
168
+ 50342,
169
+ 50343,
170
+ 50344,
171
+ 50345,
172
+ 50346,
173
+ 50347,
174
+ 50348,
175
+ 50349,
176
+ 50350,
177
+ 50351,
178
+ 50352,
179
+ 50353,
180
+ 50354,
181
+ 50355,
182
+ 50356,
183
+ 50357,
184
+ 50358
185
+ ],
186
+ "suppress_ids": [
187
+ 1,
188
+ 2,
189
+ 7,
190
+ 8,
191
+ 9,
192
+ 10,
193
+ 14,
194
+ 25,
195
+ 26,
196
+ 27,
197
+ 28,
198
+ 29,
199
+ 31,
200
+ 58,
201
+ 59,
202
+ 60,
203
+ 61,
204
+ 62,
205
+ 63,
206
+ 90,
207
+ 91,
208
+ 92,
209
+ 93,
210
+ 359,
211
+ 503,
212
+ 522,
213
+ 542,
214
+ 873,
215
+ 893,
216
+ 902,
217
+ 918,
218
+ 922,
219
+ 931,
220
+ 1350,
221
+ 1853,
222
+ 1982,
223
+ 2460,
224
+ 2627,
225
+ 3246,
226
+ 3253,
227
+ 3268,
228
+ 3536,
229
+ 3846,
230
+ 3961,
231
+ 4183,
232
+ 4667,
233
+ 6585,
234
+ 6647,
235
+ 7273,
236
+ 9061,
237
+ 9383,
238
+ 10428,
239
+ 10929,
240
+ 11938,
241
+ 12033,
242
+ 12331,
243
+ 12562,
244
+ 13793,
245
+ 14157,
246
+ 14635,
247
+ 15265,
248
+ 15618,
249
+ 16553,
250
+ 16604,
251
+ 18362,
252
+ 18956,
253
+ 20075,
254
+ 21675,
255
+ 22520,
256
+ 26130,
257
+ 26161,
258
+ 26435,
259
+ 28279,
260
+ 29464,
261
+ 31650,
262
+ 32302,
263
+ 32470,
264
+ 36865,
265
+ 42863,
266
+ 47425,
267
+ 49870,
268
+ 50254,
269
+ 50258,
270
+ 50359,
271
+ 50360,
272
+ 50361,
273
+ 50362,
274
+ 50363
275
+ ],
276
+ "suppress_ids_begin": [
277
+ 220,
278
+ 50257
279
+ ]
280
+ }
generation_config.json ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alignment_heads": [
3
+ [
4
+ 1,
5
+ 0
6
+ ],
7
+ [
8
+ 1,
9
+ 1
10
+ ],
11
+ [
12
+ 1,
13
+ 2
14
+ ],
15
+ [
16
+ 1,
17
+ 3
18
+ ],
19
+ [
20
+ 1,
21
+ 4
22
+ ],
23
+ [
24
+ 1,
25
+ 5
26
+ ],
27
+ [
28
+ 1,
29
+ 6
30
+ ],
31
+ [
32
+ 1,
33
+ 7
34
+ ],
35
+ [
36
+ 1,
37
+ 8
38
+ ],
39
+ [
40
+ 1,
41
+ 9
42
+ ],
43
+ [
44
+ 1,
45
+ 10
46
+ ],
47
+ [
48
+ 1,
49
+ 11
50
+ ],
51
+ [
52
+ 1,
53
+ 12
54
+ ],
55
+ [
56
+ 1,
57
+ 13
58
+ ],
59
+ [
60
+ 1,
61
+ 14
62
+ ],
63
+ [
64
+ 1,
65
+ 15
66
+ ],
67
+ [
68
+ 1,
69
+ 16
70
+ ],
71
+ [
72
+ 1,
73
+ 17
74
+ ],
75
+ [
76
+ 1,
77
+ 18
78
+ ],
79
+ [
80
+ 1,
81
+ 19
82
+ ]
83
+ ],
84
+ "begin_suppress_tokens": [
85
+ 220,
86
+ 50257
87
+ ],
88
+ "bos_token_id": 50257,
89
+ "decoder_start_token_id": 50258,
90
+ "eos_token_id": 50257,
91
+ "forced_decoder_ids": [
92
+ [
93
+ 1,
94
+ null
95
+ ],
96
+ [
97
+ 2,
98
+ 50360
99
+ ]
100
+ ],
101
+ "is_multilingual": true,
102
+ "lang_to_id": {
103
+ "<|af|>": 50327,
104
+ "<|am|>": 50334,
105
+ "<|ar|>": 50272,
106
+ "<|as|>": 50350,
107
+ "<|az|>": 50304,
108
+ "<|ba|>": 50355,
109
+ "<|be|>": 50330,
110
+ "<|bg|>": 50292,
111
+ "<|bn|>": 50302,
112
+ "<|bo|>": 50347,
113
+ "<|br|>": 50309,
114
+ "<|bs|>": 50315,
115
+ "<|ca|>": 50270,
116
+ "<|cs|>": 50283,
117
+ "<|cy|>": 50297,
118
+ "<|da|>": 50285,
119
+ "<|de|>": 50261,
120
+ "<|el|>": 50281,
121
+ "<|en|>": 50259,
122
+ "<|es|>": 50262,
123
+ "<|et|>": 50307,
124
+ "<|eu|>": 50310,
125
+ "<|fa|>": 50300,
126
+ "<|fi|>": 50277,
127
+ "<|fo|>": 50338,
128
+ "<|fr|>": 50265,
129
+ "<|gl|>": 50319,
130
+ "<|gu|>": 50333,
131
+ "<|haw|>": 50352,
132
+ "<|ha|>": 50354,
133
+ "<|he|>": 50279,
134
+ "<|hi|>": 50276,
135
+ "<|hr|>": 50291,
136
+ "<|ht|>": 50339,
137
+ "<|hu|>": 50286,
138
+ "<|hy|>": 50312,
139
+ "<|id|>": 50275,
140
+ "<|is|>": 50311,
141
+ "<|it|>": 50274,
142
+ "<|ja|>": 50266,
143
+ "<|jw|>": 50356,
144
+ "<|ka|>": 50329,
145
+ "<|kk|>": 50316,
146
+ "<|km|>": 50323,
147
+ "<|kn|>": 50306,
148
+ "<|ko|>": 50264,
149
+ "<|la|>": 50294,
150
+ "<|lb|>": 50345,
151
+ "<|ln|>": 50353,
152
+ "<|lo|>": 50336,
153
+ "<|lt|>": 50293,
154
+ "<|lv|>": 50301,
155
+ "<|mg|>": 50349,
156
+ "<|mi|>": 50295,
157
+ "<|mk|>": 50308,
158
+ "<|ml|>": 50296,
159
+ "<|mn|>": 50314,
160
+ "<|mr|>": 50320,
161
+ "<|ms|>": 50282,
162
+ "<|mt|>": 50343,
163
+ "<|my|>": 50346,
164
+ "<|ne|>": 50313,
165
+ "<|nl|>": 50271,
166
+ "<|nn|>": 50342,
167
+ "<|no|>": 50288,
168
+ "<|oc|>": 50328,
169
+ "<|pa|>": 50321,
170
+ "<|pl|>": 50269,
171
+ "<|ps|>": 50340,
172
+ "<|pt|>": 50267,
173
+ "<|ro|>": 50284,
174
+ "<|ru|>": 50263,
175
+ "<|sa|>": 50344,
176
+ "<|sd|>": 50332,
177
+ "<|si|>": 50322,
178
+ "<|sk|>": 50298,
179
+ "<|sl|>": 50305,
180
+ "<|sn|>": 50324,
181
+ "<|so|>": 50326,
182
+ "<|sq|>": 50317,
183
+ "<|sr|>": 50303,
184
+ "<|su|>": 50357,
185
+ "<|sv|>": 50273,
186
+ "<|sw|>": 50318,
187
+ "<|ta|>": 50287,
188
+ "<|te|>": 50299,
189
+ "<|tg|>": 50331,
190
+ "<|th|>": 50289,
191
+ "<|tk|>": 50341,
192
+ "<|tl|>": 50348,
193
+ "<|tr|>": 50268,
194
+ "<|tt|>": 50351,
195
+ "<|uk|>": 50280,
196
+ "<|ur|>": 50290,
197
+ "<|uz|>": 50337,
198
+ "<|vi|>": 50278,
199
+ "<|yi|>": 50335,
200
+ "<|yo|>": 50325,
201
+ "<|yue|>": 50358,
202
+ "<|zh|>": 50260
203
+ },
204
+ "language": "<|en|>",
205
+ "max_initial_timestamp_index": 50,
206
+ "max_length": 448,
207
+ "no_timestamps_token_id": 50364,
208
+ "pad_token_id": 50257,
209
+ "prev_sot_token_id": 50362,
210
+ "return_timestamps": false,
211
+ "suppress_tokens": [
212
+ 1,
213
+ 2,
214
+ 7,
215
+ 8,
216
+ 9,
217
+ 10,
218
+ 14,
219
+ 25,
220
+ 26,
221
+ 27,
222
+ 28,
223
+ 29,
224
+ 31,
225
+ 58,
226
+ 59,
227
+ 60,
228
+ 61,
229
+ 62,
230
+ 63,
231
+ 90,
232
+ 91,
233
+ 92,
234
+ 93,
235
+ 359,
236
+ 503,
237
+ 522,
238
+ 542,
239
+ 873,
240
+ 893,
241
+ 902,
242
+ 918,
243
+ 922,
244
+ 931,
245
+ 1350,
246
+ 1853,
247
+ 1982,
248
+ 2460,
249
+ 2627,
250
+ 3246,
251
+ 3253,
252
+ 3268,
253
+ 3536,
254
+ 3846,
255
+ 3961,
256
+ 4183,
257
+ 4667,
258
+ 6585,
259
+ 6647,
260
+ 7273,
261
+ 9061,
262
+ 9383,
263
+ 10428,
264
+ 10929,
265
+ 11938,
266
+ 12033,
267
+ 12331,
268
+ 12562,
269
+ 13793,
270
+ 14157,
271
+ 14635,
272
+ 15265,
273
+ 15618,
274
+ 16553,
275
+ 16604,
276
+ 18362,
277
+ 18956,
278
+ 20075,
279
+ 21675,
280
+ 22520,
281
+ 26130,
282
+ 26161,
283
+ 26435,
284
+ 28279,
285
+ 29464,
286
+ 31650,
287
+ 32302,
288
+ 32470,
289
+ 36865,
290
+ 42863,
291
+ 47425,
292
+ 49870,
293
+ 50254,
294
+ 50258,
295
+ 50359,
296
+ 50360,
297
+ 50361,
298
+ 50362,
299
+ 50363
300
+ ],
301
+ "task": "transcribe",
302
+ "task_to_id": {
303
+ "transcribe": 50360,
304
+ "translate": 50359
305
+ },
306
+ "transformers_version": "4.40.0.dev0"
307
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5d809be9abb08a415f7627dfe505dadacaac8c745f1b44aebf1700fbde5976b
3
+ size 3025831586
normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 128,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|startoftranscript|>",
4
+ "<|en|>",
5
+ "<|zh|>",
6
+ "<|de|>",
7
+ "<|es|>",
8
+ "<|ru|>",
9
+ "<|ko|>",
10
+ "<|fr|>",
11
+ "<|ja|>",
12
+ "<|pt|>",
13
+ "<|tr|>",
14
+ "<|pl|>",
15
+ "<|ca|>",
16
+ "<|nl|>",
17
+ "<|ar|>",
18
+ "<|sv|>",
19
+ "<|it|>",
20
+ "<|id|>",
21
+ "<|hi|>",
22
+ "<|fi|>",
23
+ "<|vi|>",
24
+ "<|he|>",
25
+ "<|uk|>",
26
+ "<|el|>",
27
+ "<|ms|>",
28
+ "<|cs|>",
29
+ "<|ro|>",
30
+ "<|da|>",
31
+ "<|hu|>",
32
+ "<|ta|>",
33
+ "<|no|>",
34
+ "<|th|>",
35
+ "<|ur|>",
36
+ "<|hr|>",
37
+ "<|bg|>",
38
+ "<|lt|>",
39
+ "<|la|>",
40
+ "<|mi|>",
41
+ "<|ml|>",
42
+ "<|cy|>",
43
+ "<|sk|>",
44
+ "<|te|>",
45
+ "<|fa|>",
46
+ "<|lv|>",
47
+ "<|bn|>",
48
+ "<|sr|>",
49
+ "<|az|>",
50
+ "<|sl|>",
51
+ "<|kn|>",
52
+ "<|et|>",
53
+ "<|mk|>",
54
+ "<|br|>",
55
+ "<|eu|>",
56
+ "<|is|>",
57
+ "<|hy|>",
58
+ "<|ne|>",
59
+ "<|mn|>",
60
+ "<|bs|>",
61
+ "<|kk|>",
62
+ "<|sq|>",
63
+ "<|sw|>",
64
+ "<|gl|>",
65
+ "<|mr|>",
66
+ "<|pa|>",
67
+ "<|si|>",
68
+ "<|km|>",
69
+ "<|sn|>",
70
+ "<|yo|>",
71
+ "<|so|>",
72
+ "<|af|>",
73
+ "<|oc|>",
74
+ "<|ka|>",
75
+ "<|be|>",
76
+ "<|tg|>",
77
+ "<|sd|>",
78
+ "<|gu|>",
79
+ "<|am|>",
80
+ "<|yi|>",
81
+ "<|lo|>",
82
+ "<|uz|>",
83
+ "<|fo|>",
84
+ "<|ht|>",
85
+ "<|ps|>",
86
+ "<|tk|>",
87
+ "<|nn|>",
88
+ "<|mt|>",
89
+ "<|sa|>",
90
+ "<|lb|>",
91
+ "<|my|>",
92
+ "<|bo|>",
93
+ "<|tl|>",
94
+ "<|mg|>",
95
+ "<|as|>",
96
+ "<|tt|>",
97
+ "<|haw|>",
98
+ "<|ln|>",
99
+ "<|ha|>",
100
+ "<|ba|>",
101
+ "<|jw|>",
102
+ "<|su|>",
103
+ "<|yue|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nospeech|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": {
112
+ "content": "<|endoftext|>",
113
+ "lstrip": false,
114
+ "normalized": false,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "eos_token": {
119
+ "content": "<|endoftext|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ },
125
+ "pad_token": "<|endoftext|>",
126
+ "unk_token": {
127
+ "content": "<|endoftext|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false
132
+ }
133
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
vocabulary.json ADDED
The diff for this file is too large to render. See raw diff