ctranslate2-4you
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: ctranslate2
|
3 |
+
license: apache-2.0
|
4 |
+
base_model:
|
5 |
+
- internlm/internlm3-8b-instruct
|
6 |
+
base_model_relation: quantized
|
7 |
+
tags:
|
8 |
+
- ctranslate2
|
9 |
+
- awq
|
10 |
+
- internlm3
|
11 |
+
- chat
|
12 |
+
---
|
13 |
+
|
14 |
+
### Ctranslate2 conversion of InternLM3 - 8b
|
15 |
+
|
16 |
+
[Original model here](https://huggingface.co/internlm/internlm3-8b-instruct-awq)
|
17 |
+
|
18 |
+
# Example Usage
|
19 |
+
|
20 |
+
<details><summary>Non-Streaming Example:</summary>
|
21 |
+
|
22 |
+
```python
|
23 |
+
import ctranslate2
|
24 |
+
from transformers import AutoTokenizer
|
25 |
+
|
26 |
+
def generate_response(prompt: str, system_message: str, model_path: str) -> str:
|
27 |
+
generator = ctranslate2.Generator(
|
28 |
+
model_path,
|
29 |
+
device="cuda",
|
30 |
+
compute_type="int8"
|
31 |
+
)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
33 |
+
formatted_prompt = f"""<s><|im_start|>system
|
34 |
+
{system_message}<|im_end|>
|
35 |
+
<|im_start|>user
|
36 |
+
{user_message}<|im_end|>
|
37 |
+
<|im_start|>assistant
|
38 |
+
"""
|
39 |
+
tokens = tokenizer.tokenize(formatted_prompt, trust_remote_code=True)
|
40 |
+
results = generator.generate_batch(
|
41 |
+
[tokens],
|
42 |
+
max_length=1024,
|
43 |
+
sampling_temperature=0.7,
|
44 |
+
include_prompt_in_result=False,
|
45 |
+
end_token="<|im_end|>",
|
46 |
+
return_end_token=False,
|
47 |
+
)
|
48 |
+
response = tokenizer.decode(results[0].sequences_ids[0], skip_special_tokens=True)
|
49 |
+
return response
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
model_path = "path/to/your/phi-4-ct2-model"
|
53 |
+
system_message = "You are a helpful AI assistant."
|
54 |
+
user_prompt = "Write a short poem about a cat."
|
55 |
+
response = generate_response(user_prompt, system_message, model_path)
|
56 |
+
print("\nGenerated response:")
|
57 |
+
print(response)
|
58 |
+
|
59 |
+
```
|
60 |
+
</details>
|