Clément Thiriet commited on
Commit
7622d87
·
1 Parent(s): f4a5e98

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 826.68 +/- 73.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e4944c18b93bbaeec66f16313fdf0d5905f5ad55d745700bbb1f7f970f15ed3
3
+ size 129266
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f84a2d46790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f84a2d46820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f84a2d468b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f84a2d46940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f84a2d469d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f84a2d46a60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f84a2d46af0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f84a2d46b80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f84a2d46c10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f84a2d46ca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f84a2d46d30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84a2d46dc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f84a2d495c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 233320,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678700657127549511,
68
+ "learning_rate": 0.0007,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJhNVL+QP3g9Eu0DP1yosL5XG72+Fg8uPuf4DL9PXCW+DDt2vydtAz76tmG/s0K2vQz1kT/hgr68tjyAP5amnT21Giq+9e2ju0J21z7OpLu9fU5av6oAwz1dkTy+xKX1PXYN1T5eOQY/D+elPlStwD7OUDw+DhQeP09VXz68em9Az6w1vGScn7560RE+QiYvvjjIir+pcL09TfVAvvg+hz+y80c/qxeov2SWWD4warE/xlGkvrJtZr/9b34+wkbJP2HwZL9Xong+Jt7HvsbdyT92DdU+XjkGPw/npT4iESrAtmArv105Hr89wwQ/qYgjv9J7V76X6gA+kh83v+zHar5LYZe/LDoJuzoQT7984z6+sB3gPuYT4r0fx4Q/BmsKvXbTA75/ske9UXmgPhIeOL6zJNE/TmKWPK2iMT47WBS+dg3VPl45Bj8P56U+VK3APnZDhr+5LMk/5vyNv2oL6D2XepK/AS+tPvdFV7+VeOE9wkOGv5bk8z4GHZu/NdEaPkeYeT8TSGg96IWCP6WhAD+FFZI/gMJkPENn3j3PfqS+jFRdv9syFj465bK9qnIJP3YN1T5eOQY/D+elPlStwD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACJBFk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAX+vGvQAAAACgtPK/AAAAAPO7pbwAAAAAVxMBQAAAAADMwco9AAAAAEN77D8AAAAAaeoXPQAAAAARvNy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+1xYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHwn77sAAAAAlPrmvwAAAAA04AI+AAAAAOkH+j8AAAAAcTaMPQAAAADKENw/AAAAAMEoiD0AAAAA0hf1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH9jEDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAai5E9AAAAAO1g4r8AAAAAXU+JPQAAAABrfdw/AAAAADD6CD4AAAAAgeTqPwAAAAAN2BE9AAAAAEP58L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4G2G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAA4mLPQAAAAAbsfi/AAAAADFEuD0AAAAAWvXqPwAAAAAdOFO9AAAAABOB5T8AAAAA9i/oPQAAAABlcvi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.88334,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIbkm+wkgOmMAWyUTegDjAF0lEdAkPimdRR/E3V9lChoBkdAhAF2XkYGdWgHTegDaAhHQJD9BiBoVVR1fZQoaAZHQIaNMer+5vtoB03oA2gIR0CRAeWnTAnEdX2UKGgGR0CFsZ3+uNgjaAdN6ANoCEdAkQdKx5cC5nV9lChoBkdAgY5aGYa5w2gHTegDaAhHQJEbJOTJQtV1fZQoaAZHQIXiZLIxQBRoB03oA2gIR0CRHjtix3V1dX2UKGgGR0CEqtULDye7aAdN6ANoCEdAkSFHl4keIXV9lChoBkdAhEOeHJtBOmgHTegDaAhHQJEksHt4RmN1fZQoaAZHQIUDLGDL8rJoB03oA2gIR0CROibR4QjEdX2UKGgGR0CF8avX9R77aAdN6ANoCEdAkT7m9tdiUnV9lChoBkdAhTatIbwSamgHTegDaAhHQJFD4xsVLzx1fZQoaAZHQIV9LC+De0poB03oA2gIR0CRSOI4lyBDdX2UKGgGR0CGMNL8JlasaAdN6ANoCEdAkVvRvaURnXV9lChoBkdAhcb5BTn7pGgHTegDaAhHQJFe7M2WIGh1fZQoaAZHQIVr8f/3nIRoB03oA2gIR0CRYjaBI4EPdX2UKGgGR0CH4Z/uLJjlaAdN6ANoCEdAkWXHGjsUqXV9lChoBkdAhqgJXyRSxmgHTegDaAhHQJF82Vv/BFd1fZQoaAZHQIL6QSSNfgJoB03oA2gIR0CRgbB6KLsKdX2UKGgGR0CCm33oLXtjaAdN6ANoCEdAkYaoFaB7NXV9lChoBkdAheRr+o99t2gHTegDaAhHQJGKE79ycTd1fZQoaAZHQIgGC2rn1WdoB03oA2gIR0CRnMTfixVydX2UKGgGR0CENJXr+o9+aAdN6ANoCEdAkZ/f3N9piHV9lChoBkdAhCJAflp48mgHTegDaAhHQJGkVyhi9Zl1fZQoaAZHQIdEcb3oLXtoB03oA2gIR0CRqTxC6YmcdX2UKGgGR0CC9lsO5J9RaAdN6ANoCEdAkccKIvalDXV9lChoBkdAhtz/NA1NxmgHTegDaAhHQJHLgVN5+ph1fZQoaAZHQITd8q8UVSJoB03oA2gIR0CRzq3bmEGrdX2UKGgGR0CIsssPrfLtaAdN6ANoCEdAkdIYTGo73nV9lChoBkdAhUtynk1dgWgHTegDaAhHQJHlANrj5sV1fZQoaAZHQIXXVQ9A5aNoB03oA2gIR0CR6D6kqMFVdX2UKGgGR0CET5K02LpBaAdN6ANoCEdAket5j2BatHV9lChoBkdAf9lFjd56dGgHTegDaAhHQJHu3mV7hNx1fZQoaAZHQIGpRtYSxqxoB03oA2gIR0CSCbtygf2cdX2UKGgGR0CG730TURWcaAdN6ANoCEdAkgy3NLUTc3V9lChoBkdAh2jZq20AtGgHTegDaAhHQJIP/wPRRdh1fZQoaAZHQIJYb9OymhxoB03oA2gIR0CSE2khib2EdX2UKGgGR0CH2oJ7b+LnaAdN6ANoCEdAkiZk6PsAvXV9lChoBkdAiKuOXNTtLWgHTegDaAhHQJIpbEHdGiJ1fZQoaAZHQIAasHY6GQFoB03oA2gIR0CSLKL2HtWudX2UKGgGR0CGYBbpu/DcaAdN6ANoCEdAkjArkS26TXV9lChoBkdAiBdOwHJLd2gHTegDaAhHQJJK++i8Fpx1fZQoaAZHQIcuAjIJZ4hoB03oA2gIR0CSTgV+qioLdX2UKGgGR0CHJXzFuNxVaAdN6ANoCEdAklE7LIPsiXV9lChoBkdAilz5ylvZRWgHTegDaAhHQJJUqnR9gF51fZQoaAZHQImZrfrKNhpoB03oA2gIR0CSZ5274BV/dX2UKGgGR0CHafI7vG6xaAdN6ANoCEdAkmqc2vStvHV9lChoBkdAiT3+HrQgLmgHTegDaAhHQJJt1EE1VHZ1fZQoaAZHQIf+KU/wAlxoB03oA2gIR0CSccoYekpJdX2UKGgGR0CB4N2lEZzgaAdN6ANoCEdAkowoNy5qd3V9lChoBkdAhkUrQHAymGgHTegDaAhHQJKPNXko4Mp1fZQoaAZHQILxhtHhCMRoB03oA2gIR0CSknjQiRnwdX2UKGgGR0CD6tF/hESeaAdN6ANoCEdAkpXSx7iQ1nV9lChoBkdAgyMDxTbWVmgHTegDaAhHQJKsvv9cbBJ1fZQoaAZHQIZ4KQNkOI9oB03oA2gIR0CSsjhjOLR8dX2UKGgGR0CDvuFXaJyiaAdN6ANoCEdAkrkj7qIJq3V9lChoBkdAhMwXJYDDCWgHTegDaAhHQJK+Ki7Ciyp1fZQoaAZHQIXrFF8XvYxoB03oA2gIR0CS1WgFHJ9zdX2UKGgGR0CH8U3y7PIGaAdN6ANoCEdAktiVxCIDYHV9lChoBkdAg/FC9ytFKGgHTegDaAhHQJLbxycTakB1fZQoaAZHQIQmgwh4dIZoB03oA2gIR0CS3yKSPluFdX2UKGgGR0CEudoSteUqaAdN6ANoCEdAkvIXVbzK93V9lChoBkdAhgpPdl/YrmgHTegDaAhHQJL2Uk8ifQN1fZQoaAZHQIYmDp5eJHloB03oA2gIR0CS+uXsPatcdX2UKGgGR0CCRD1W8yvcaAdN6ANoCEdAkwBbGR3eN3V9lChoBkdAg7CH3cpLEmgHTegDaAhHQJMXBGSZBs11fZQoaAZHQIJxybnX/YJoB03oA2gIR0CTGfYqXnhbdX2UKGgGR0CEDEDW9US7aAdN6ANoCEdAkx1nkYGdJHV9lChoBkdAhdBN8E3bVWgHTegDaAhHQJMg66Ymb9Z1fZQoaAZHQIjYRigCfYloB03oA2gIR0CTNOCI1tO3dX2UKGgGR0CHvUnWrfcfaAdN6ANoCEdAkzlHNxEORXV9lChoBkdAimS0X531SWgHTegDaAhHQJM+IdS2php1fZQoaAZHQIgQyx9oexRoB03oA2gIR0CTQ3CZWq95dX2UKGgGR0CHI2DvmYBvaAdN6ANoCEdAk1gOpS75EnV9lChoBkdAhleyntOVPmgHTegDaAhHQJNbDxMFlkJ1fZQoaAZHQIgWJC4SYgJoB03oA2gIR0CTXli704BFdX2UKGgGR0CJvyFrVOKwaAdN6ANoCEdAk2Hc1CPZI3V9lChoBkdAiWh3T3IuG2gHTegDaAhHQJN2k1CPZIx1fZQoaAZHQIaS1oHs1KpoB03oA2gIR0CTeyBPbfxddX2UKGgGR0CI2N25hBqsaAdN6ANoCEdAk4Ae8scyWXV9lChoBkdAjG5g3cYZVGgHTegDaAhHQJOFhcxCY1J1fZQoaAZHQIYfRamoBJZoB03oA2gIR0CTmNS2phnbdX2UKGgGR0CIpbGn4wh4aAdN6ANoCEdAk5wjiXIEKXV9lChoBkdAhQYl7+kxh2gHTegDaAhHQJOgG8e0Xxh1fZQoaAZHQIcfAuAZsKtoB03oA2gIR0CTpQVGTcIrdX2UKGgGR0CFHECuloDgaAdN6ANoCEdAk8KKDPGACnV9lChoBkdAituYUnG83GgHTegDaAhHQJPHXXPJJXh1fZQoaAZHQIkR/wy6+WZoB03oA2gIR0CTytPUrkKedX2UKGgGR0CFLNs67ulXaAdN6ANoCEdAk85T6SDAanV9lChoBkdAim0SKWLP2WgHTegDaAhHQJPhLRrrPdF1fZQoaAZHQIYtKADq4YtoB03oA2gIR0CT5Cga3qiXdX2UKGgGR0CFk+0+kgwHaAdN6ANoCEdAk+dE7CBPK3V9lChoBkdAi0neuV5a/2gHTegDaAhHQJPqsvboKUp1fZQoaAZHQIsdS8FpwjtoB03oA2gIR0CUBN2AoXsPdX2UKGgGR0CKHg8nuy/saAdN6ANoCEdAlAiVVLi++XV9lChoBkdAiRslDWsijmgHTegDaAhHQJQL2sq8UVV1fZQoaAZHQIlD4QnQY1poB03oA2gIR0CUD0f+S8radX2UKGgGR0CGZsXqqwQlaAdN6ANoCEdAlCJU74i5eHV9lChoBkdAh3v5GSZBs2gHTegDaAhHQJQlXV09yLh1fZQoaAZHQIkM3El3QldoB03oA2gIR0CUKJsWfseGdX2UKGgGR0CHrr7kXDWLaAdN6ANoCEdAlCwS+6Ae73VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 5832,
99
+ "n_steps": 10,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": true
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be8cc6c7c3008a3438c23923a01cc479ed2a2dbbd7470d474a86b1282ef6b1c8
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5dd25adc91c3e6399224e5e745228fb2fe0d44db63c5beaeaa0205471a8d786
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f84a2d46790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f84a2d46820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f84a2d468b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f84a2d46940>", "_build": "<function ActorCriticPolicy._build at 0x7f84a2d469d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f84a2d46a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f84a2d46af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f84a2d46b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f84a2d46c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f84a2d46ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f84a2d46d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84a2d46dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f84a2d495c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 233320, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678700657127549511, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJhNVL+QP3g9Eu0DP1yosL5XG72+Fg8uPuf4DL9PXCW+DDt2vydtAz76tmG/s0K2vQz1kT/hgr68tjyAP5amnT21Giq+9e2ju0J21z7OpLu9fU5av6oAwz1dkTy+xKX1PXYN1T5eOQY/D+elPlStwD7OUDw+DhQeP09VXz68em9Az6w1vGScn7560RE+QiYvvjjIir+pcL09TfVAvvg+hz+y80c/qxeov2SWWD4warE/xlGkvrJtZr/9b34+wkbJP2HwZL9Xong+Jt7HvsbdyT92DdU+XjkGPw/npT4iESrAtmArv105Hr89wwQ/qYgjv9J7V76X6gA+kh83v+zHar5LYZe/LDoJuzoQT7984z6+sB3gPuYT4r0fx4Q/BmsKvXbTA75/ske9UXmgPhIeOL6zJNE/TmKWPK2iMT47WBS+dg3VPl45Bj8P56U+VK3APnZDhr+5LMk/5vyNv2oL6D2XepK/AS+tPvdFV7+VeOE9wkOGv5bk8z4GHZu/NdEaPkeYeT8TSGg96IWCP6WhAD+FFZI/gMJkPENn3j3PfqS+jFRdv9syFj465bK9qnIJP3YN1T5eOQY/D+elPlStwD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACJBFk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAX+vGvQAAAACgtPK/AAAAAPO7pbwAAAAAVxMBQAAAAADMwco9AAAAAEN77D8AAAAAaeoXPQAAAAARvNy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+1xYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHwn77sAAAAAlPrmvwAAAAA04AI+AAAAAOkH+j8AAAAAcTaMPQAAAADKENw/AAAAAMEoiD0AAAAA0hf1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH9jEDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAai5E9AAAAAO1g4r8AAAAAXU+JPQAAAABrfdw/AAAAADD6CD4AAAAAgeTqPwAAAAAN2BE9AAAAAEP58L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4G2G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAA4mLPQAAAAAbsfi/AAAAADFEuD0AAAAAWvXqPwAAAAAdOFO9AAAAABOB5T8AAAAA9i/oPQAAAABlcvi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.88334, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIbkm+wkgOmMAWyUTegDjAF0lEdAkPimdRR/E3V9lChoBkdAhAF2XkYGdWgHTegDaAhHQJD9BiBoVVR1fZQoaAZHQIaNMer+5vtoB03oA2gIR0CRAeWnTAnEdX2UKGgGR0CFsZ3+uNgjaAdN6ANoCEdAkQdKx5cC5nV9lChoBkdAgY5aGYa5w2gHTegDaAhHQJEbJOTJQtV1fZQoaAZHQIXiZLIxQBRoB03oA2gIR0CRHjtix3V1dX2UKGgGR0CEqtULDye7aAdN6ANoCEdAkSFHl4keIXV9lChoBkdAhEOeHJtBOmgHTegDaAhHQJEksHt4RmN1fZQoaAZHQIUDLGDL8rJoB03oA2gIR0CROibR4QjEdX2UKGgGR0CF8avX9R77aAdN6ANoCEdAkT7m9tdiUnV9lChoBkdAhTatIbwSamgHTegDaAhHQJFD4xsVLzx1fZQoaAZHQIV9LC+De0poB03oA2gIR0CRSOI4lyBDdX2UKGgGR0CGMNL8JlasaAdN6ANoCEdAkVvRvaURnXV9lChoBkdAhcb5BTn7pGgHTegDaAhHQJFe7M2WIGh1fZQoaAZHQIVr8f/3nIRoB03oA2gIR0CRYjaBI4EPdX2UKGgGR0CH4Z/uLJjlaAdN6ANoCEdAkWXHGjsUqXV9lChoBkdAhqgJXyRSxmgHTegDaAhHQJF82Vv/BFd1fZQoaAZHQIL6QSSNfgJoB03oA2gIR0CRgbB6KLsKdX2UKGgGR0CCm33oLXtjaAdN6ANoCEdAkYaoFaB7NXV9lChoBkdAheRr+o99t2gHTegDaAhHQJGKE79ycTd1fZQoaAZHQIgGC2rn1WdoB03oA2gIR0CRnMTfixVydX2UKGgGR0CENJXr+o9+aAdN6ANoCEdAkZ/f3N9piHV9lChoBkdAhCJAflp48mgHTegDaAhHQJGkVyhi9Zl1fZQoaAZHQIdEcb3oLXtoB03oA2gIR0CRqTxC6YmcdX2UKGgGR0CC9lsO5J9RaAdN6ANoCEdAkccKIvalDXV9lChoBkdAhtz/NA1NxmgHTegDaAhHQJHLgVN5+ph1fZQoaAZHQITd8q8UVSJoB03oA2gIR0CRzq3bmEGrdX2UKGgGR0CIsssPrfLtaAdN6ANoCEdAkdIYTGo73nV9lChoBkdAhUtynk1dgWgHTegDaAhHQJHlANrj5sV1fZQoaAZHQIXXVQ9A5aNoB03oA2gIR0CR6D6kqMFVdX2UKGgGR0CET5K02LpBaAdN6ANoCEdAket5j2BatHV9lChoBkdAf9lFjd56dGgHTegDaAhHQJHu3mV7hNx1fZQoaAZHQIGpRtYSxqxoB03oA2gIR0CSCbtygf2cdX2UKGgGR0CG730TURWcaAdN6ANoCEdAkgy3NLUTc3V9lChoBkdAh2jZq20AtGgHTegDaAhHQJIP/wPRRdh1fZQoaAZHQIJYb9OymhxoB03oA2gIR0CSE2khib2EdX2UKGgGR0CH2oJ7b+LnaAdN6ANoCEdAkiZk6PsAvXV9lChoBkdAiKuOXNTtLWgHTegDaAhHQJIpbEHdGiJ1fZQoaAZHQIAasHY6GQFoB03oA2gIR0CSLKL2HtWudX2UKGgGR0CGYBbpu/DcaAdN6ANoCEdAkjArkS26TXV9lChoBkdAiBdOwHJLd2gHTegDaAhHQJJK++i8Fpx1fZQoaAZHQIcuAjIJZ4hoB03oA2gIR0CSTgV+qioLdX2UKGgGR0CHJXzFuNxVaAdN6ANoCEdAklE7LIPsiXV9lChoBkdAilz5ylvZRWgHTegDaAhHQJJUqnR9gF51fZQoaAZHQImZrfrKNhpoB03oA2gIR0CSZ5274BV/dX2UKGgGR0CHafI7vG6xaAdN6ANoCEdAkmqc2vStvHV9lChoBkdAiT3+HrQgLmgHTegDaAhHQJJt1EE1VHZ1fZQoaAZHQIf+KU/wAlxoB03oA2gIR0CSccoYekpJdX2UKGgGR0CB4N2lEZzgaAdN6ANoCEdAkowoNy5qd3V9lChoBkdAhkUrQHAymGgHTegDaAhHQJKPNXko4Mp1fZQoaAZHQILxhtHhCMRoB03oA2gIR0CSknjQiRnwdX2UKGgGR0CD6tF/hESeaAdN6ANoCEdAkpXSx7iQ1nV9lChoBkdAgyMDxTbWVmgHTegDaAhHQJKsvv9cbBJ1fZQoaAZHQIZ4KQNkOI9oB03oA2gIR0CSsjhjOLR8dX2UKGgGR0CDvuFXaJyiaAdN6ANoCEdAkrkj7qIJq3V9lChoBkdAhMwXJYDDCWgHTegDaAhHQJK+Ki7Ciyp1fZQoaAZHQIXrFF8XvYxoB03oA2gIR0CS1WgFHJ9zdX2UKGgGR0CH8U3y7PIGaAdN6ANoCEdAktiVxCIDYHV9lChoBkdAg/FC9ytFKGgHTegDaAhHQJLbxycTakB1fZQoaAZHQIQmgwh4dIZoB03oA2gIR0CS3yKSPluFdX2UKGgGR0CEudoSteUqaAdN6ANoCEdAkvIXVbzK93V9lChoBkdAhgpPdl/YrmgHTegDaAhHQJL2Uk8ifQN1fZQoaAZHQIYmDp5eJHloB03oA2gIR0CS+uXsPatcdX2UKGgGR0CCRD1W8yvcaAdN6ANoCEdAkwBbGR3eN3V9lChoBkdAg7CH3cpLEmgHTegDaAhHQJMXBGSZBs11fZQoaAZHQIJxybnX/YJoB03oA2gIR0CTGfYqXnhbdX2UKGgGR0CEDEDW9US7aAdN6ANoCEdAkx1nkYGdJHV9lChoBkdAhdBN8E3bVWgHTegDaAhHQJMg66Ymb9Z1fZQoaAZHQIjYRigCfYloB03oA2gIR0CTNOCI1tO3dX2UKGgGR0CHvUnWrfcfaAdN6ANoCEdAkzlHNxEORXV9lChoBkdAimS0X531SWgHTegDaAhHQJM+IdS2php1fZQoaAZHQIgQyx9oexRoB03oA2gIR0CTQ3CZWq95dX2UKGgGR0CHI2DvmYBvaAdN6ANoCEdAk1gOpS75EnV9lChoBkdAhleyntOVPmgHTegDaAhHQJNbDxMFlkJ1fZQoaAZHQIgWJC4SYgJoB03oA2gIR0CTXli704BFdX2UKGgGR0CJvyFrVOKwaAdN6ANoCEdAk2Hc1CPZI3V9lChoBkdAiWh3T3IuG2gHTegDaAhHQJN2k1CPZIx1fZQoaAZHQIaS1oHs1KpoB03oA2gIR0CTeyBPbfxddX2UKGgGR0CI2N25hBqsaAdN6ANoCEdAk4Ae8scyWXV9lChoBkdAjG5g3cYZVGgHTegDaAhHQJOFhcxCY1J1fZQoaAZHQIYfRamoBJZoB03oA2gIR0CTmNS2phnbdX2UKGgGR0CIpbGn4wh4aAdN6ANoCEdAk5wjiXIEKXV9lChoBkdAhQYl7+kxh2gHTegDaAhHQJOgG8e0Xxh1fZQoaAZHQIcfAuAZsKtoB03oA2gIR0CTpQVGTcIrdX2UKGgGR0CFHECuloDgaAdN6ANoCEdAk8KKDPGACnV9lChoBkdAituYUnG83GgHTegDaAhHQJPHXXPJJXh1fZQoaAZHQIkR/wy6+WZoB03oA2gIR0CTytPUrkKedX2UKGgGR0CFLNs67ulXaAdN6ANoCEdAk85T6SDAanV9lChoBkdAim0SKWLP2WgHTegDaAhHQJPhLRrrPdF1fZQoaAZHQIYtKADq4YtoB03oA2gIR0CT5Cga3qiXdX2UKGgGR0CFk+0+kgwHaAdN6ANoCEdAk+dE7CBPK3V9lChoBkdAi0neuV5a/2gHTegDaAhHQJPqsvboKUp1fZQoaAZHQIsdS8FpwjtoB03oA2gIR0CUBN2AoXsPdX2UKGgGR0CKHg8nuy/saAdN6ANoCEdAlAiVVLi++XV9lChoBkdAiRslDWsijmgHTegDaAhHQJQL2sq8UVV1fZQoaAZHQIlD4QnQY1poB03oA2gIR0CUD0f+S8radX2UKGgGR0CGZsXqqwQlaAdN6ANoCEdAlCJU74i5eHV9lChoBkdAh3v5GSZBs2gHTegDaAhHQJQlXV09yLh1fZQoaAZHQIkM3El3QldoB03oA2gIR0CUKJsWfseGdX2UKGgGR0CHrr7kXDWLaAdN6ANoCEdAlCwS+6Ae73VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5832, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (432 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 826.678821705631, "std_reward": 73.56745580061508, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T09:54:08.664417"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a25add7ea97d2ff613a935a48c6b6b208f2172f02b45d7c4cbe3f129db50e8a
3
+ size 2136