#!/usr/bin/env python3 # Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang) # Please see ./run.sh for usages import argparse import os import tensorflow as tf # Code in the following function is modified from # https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc def freeze_graph(model_dir, output_node_names, output_filename): """Extract the sub graph defined by the output nodes and convert all its variables into constant Args: model_dir: the root folder containing the checkpoint state file output_node_names: a string, containing all the output node's names, comma separated output_filename: Filename to save the graph. """ if not tf.compat.v1.gfile.Exists(model_dir): raise AssertionError( "Export directory doesn't exists. Please specify an export " "directory: %s" % model_dir ) if not output_node_names: print("You need to supply the name of a node to --output_node_names.") return -1 # We retrieve our checkpoint fullpath checkpoint = tf.train.get_checkpoint_state(model_dir) input_checkpoint = checkpoint.model_checkpoint_path # We precise the file fullname of our freezed graph absolute_model_dir = "/".join(input_checkpoint.split("/")[:-1]) output_graph = output_filename # We clear devices to allow TensorFlow to control on which device it will load operations clear_devices = True # We start a session using a temporary fresh Graph with tf.compat.v1.Session(graph=tf.Graph()) as sess: # We import the meta graph in the current default Graph saver = tf.compat.v1.train.import_meta_graph( input_checkpoint + ".meta", clear_devices=clear_devices ) # We restore the weights saver.restore(sess, input_checkpoint) # We use a built-in TF helper to export variables to constants output_graph_def = tf.compat.v1.graph_util.convert_variables_to_constants( sess, # The session is used to retrieve the weights tf.compat.v1.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes output_node_names.split( "," ), # The output node names are used to select the usefull nodes ) # Finally we serialize and dump the output graph to the filesystem with tf.compat.v1.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString()) print("%d ops in the final graph." % len(output_graph_def.node)) return output_graph_def if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model-dir", type=str, default="", help="Model folder to export" ) parser.add_argument( "--output-node-names", type=str, default="vocals_spectrogram/mul,accompaniment_spectrogram/mul", help="The name of the output nodes, comma separated.", ) parser.add_argument( "--output-filename", type=str, ) args = parser.parse_args() freeze_graph(args.model_dir, args.output_node_names, args.output_filename)