--- tags: - merge - mergekit - lazymergekit - cstr/Spaetzle-v65-7b - cstr/Spaetzle-v64-7b base_model: - cstr/Spaetzle-v65-7b - cstr/Spaetzle-v64-7b --- # Spaetzle-v68-7b Spaetzle-v68-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [cstr/Spaetzle-v65-7b](https://huggingface.co/cstr/Spaetzle-v65-7b) * [cstr/Spaetzle-v64-7b](https://huggingface.co/cstr/Spaetzle-v64-7b) ## 🧩 Configuration ```yaml models: - model: cstr/Spaetzle-v67-7b # no parameters necessary for base model - model: cstr/Spaetzle-v65-7b parameters: density: 0.60 weight: 0.30 - model: cstr/Spaetzle-v64-7b parameters: density: 0.65 weight: 0.30 merge_method: dare_ties base_model: cstr/Spaetzle-v67-7b parameters: int8_mask: true dtype: bfloat16 random_seed: 0 tokenizer_source: base ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "cstr/Spaetzle-v68-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```