MNISTClassification / GetMismatch.py
csisc's picture
Create GetMismatch.py
d1a9313
raw
history blame contribute delete
808 Bytes
incorrect_examples = []
incorrect_labels = []
incorrect_pred = []
model.eval()
for data,target in test_loader:
data , target = data.to(device), target.to(device)
output = model(data) # shape = torch.Size([batch_size, 10])
pred = output.argmax(dim=1, keepdim=True) #pred will be a 2d tensor of shape [batch_size,1]
idxs_mask = ((pred == target.view_as(pred))==False).view(-1)
if idxs_mask.numel(): #if index masks is non-empty append the correspoding data value in incorrect examples
incorrect_examples.append(data[idxs_mask].squeeze().cpu().numpy())
incorrect_labels.append(target[idxs_mask].cpu().numpy()) #the corresponding target to the misclassified image
incorrect_pred.append(pred[idxs_mask].squeeze().cpu().numpy()) #the corresponiding predicted class of the misclassified image