--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - toigen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-toigen-balanced-model results: [] --- # mms-1b-toigen-balanced-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the TOIGEN - TOI dataset. It achieves the following results on the evaluation set: - Loss: 0.3234 - Wer: 0.3755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 14.2297 | 0.8850 | 100 | 3.4836 | 1.0056 | | 4.1389 | 1.7699 | 200 | 0.5562 | 0.5694 | | 1.3643 | 2.6549 | 300 | 0.4360 | 0.4958 | | 1.1715 | 3.5398 | 400 | 0.3980 | 0.4824 | | 1.1309 | 4.4248 | 500 | 0.3785 | 0.4583 | | 1.0283 | 5.3097 | 600 | 0.3741 | 0.4477 | | 1.0148 | 6.1947 | 700 | 0.3669 | 0.4403 | | 0.9961 | 7.0796 | 800 | 0.3607 | 0.4356 | | 0.9248 | 7.9646 | 900 | 0.3581 | 0.4236 | | 0.9482 | 8.8496 | 1000 | 0.3463 | 0.4356 | | 0.8815 | 9.7345 | 1100 | 0.3488 | 0.4273 | | 0.8209 | 10.6195 | 1200 | 0.3384 | 0.4 | | 0.8754 | 11.5044 | 1300 | 0.3459 | 0.4051 | | 0.8454 | 12.3894 | 1400 | 0.3317 | 0.3884 | | 0.8164 | 13.2743 | 1500 | 0.3319 | 0.4032 | | 0.7673 | 14.1593 | 1600 | 0.3311 | 0.3921 | | 0.7953 | 15.0442 | 1700 | 0.3333 | 0.3944 | | 0.7527 | 15.9292 | 1800 | 0.3313 | 0.3917 | | 0.763 | 16.8142 | 1900 | 0.3278 | 0.3931 | | 0.7319 | 17.6991 | 2000 | 0.3234 | 0.3755 | | 0.7352 | 18.5841 | 2100 | 0.3248 | 0.3806 | | 0.7017 | 19.4690 | 2200 | 0.3334 | 0.3852 | | 0.6902 | 20.3540 | 2300 | 0.3304 | 0.3889 | | 0.707 | 21.2389 | 2400 | 0.3314 | 0.3856 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0