--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - toigen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-toigen-balanced-model results: [] --- # mms-1b-toigen-balanced-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the TOIGEN - TOI dataset. It achieves the following results on the evaluation set: - Loss: 0.3740 - Wer: 0.3990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 7.7726 | 0.4464 | 100 | 3.8109 | 0.9938 | | 2.5726 | 0.8929 | 200 | 0.8106 | 0.6167 | | 0.7986 | 1.3393 | 300 | 0.5409 | 0.5258 | | 0.6324 | 1.7857 | 400 | 0.5256 | 0.5054 | | 0.603 | 2.2321 | 500 | 0.4854 | 0.4832 | | 0.59 | 2.6786 | 600 | 0.4733 | 0.4846 | | 0.5489 | 3.125 | 700 | 0.4440 | 0.4657 | | 0.5173 | 3.5714 | 800 | 0.4322 | 0.4576 | | 0.5315 | 4.0179 | 900 | 0.4286 | 0.4453 | | 0.4912 | 4.4643 | 1000 | 0.4254 | 0.4458 | | 0.4728 | 4.9107 | 1100 | 0.4346 | 0.4430 | | 0.4989 | 5.3571 | 1200 | 0.4050 | 0.4292 | | 0.4661 | 5.8036 | 1300 | 0.4019 | 0.4255 | | 0.4755 | 6.25 | 1400 | 0.4129 | 0.4449 | | 0.4603 | 6.6964 | 1500 | 0.4046 | 0.4255 | | 0.4229 | 7.1429 | 1600 | 0.3939 | 0.4150 | | 0.455 | 7.5893 | 1700 | 0.4133 | 0.4155 | | 0.4501 | 8.0357 | 1800 | 0.3978 | 0.4065 | | 0.45 | 8.4821 | 1900 | 0.3925 | 0.4231 | | 0.4226 | 8.9286 | 2000 | 0.3901 | 0.4098 | | 0.3973 | 9.375 | 2100 | 0.3810 | 0.4056 | | 0.4038 | 9.8214 | 2200 | 0.4178 | 0.4117 | | 0.4559 | 10.2679 | 2300 | 0.3875 | 0.4075 | | 0.4399 | 10.7143 | 2400 | 0.3742 | 0.3990 | | 0.3545 | 11.1607 | 2500 | 0.3818 | 0.4013 | | 0.4452 | 11.6071 | 2600 | 0.3906 | 0.3980 | | 0.4014 | 12.0536 | 2700 | 0.3752 | 0.3999 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0