File size: 2,236 Bytes
fef7ae6
 
e1acaa3
 
 
 
 
 
 
3e3a92f
 
 
 
 
 
fef7ae6
e1acaa3
3e3a92f
e1acaa3
 
 
 
3e3a92f
e1acaa3
 
 
 
3e3a92f
e1acaa3
 
 
290eda6
e1acaa3
1a33e28
e1acaa3
 
3e3a92f
e1acaa3
3e3a92f
e1acaa3
3e3a92f
e1acaa3
3e3a92f
e1acaa3
3e3a92f
e1acaa3
3e3a92f
e1acaa3
 
 
 
 
 
3e3a92f
1a33e28
 
 
 
 
 
 
 
 
 
 
 
 
3e3a92f
e1acaa3
 
 
3e3a92f
e1acaa3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: lgpl
language:
- en
- de
- es
- ca
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- stance
- classification
- pytorch
- multilingual
---

## Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Cristina España-Bonet
- **Model type:** Binary stance classifier on top of XLM-RoBERTa
- **Language(s) (NLP):** English, German and Spanish
- **License:** LGPL
- **Finetuned from model:**  XLM-RoBERTa Large

## Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/cristinae/docTransformer
- **Data:** https://zenodo.org/records/8417761
- **Paper:** https://aclanthology.org/2023.findings-emnlp.787/


## Direct Use

Determine the political stance of a (newspaper) article. Binary classification: left vs. right stance

#### Evaluation

```srun --ntasks 1 --gpus-per-task 1 python -u docClassifier.py --task evaluation -f ./ -o politicalStanceLvsR_en.bin  --test_dataset your.test```

#### Classification

```srun --ntasks 1 --gpus-per-task 1 python -u docClassifier.py --task classification -f ./ -o politicalStanceLvsR_en.bin  --test_dataset your.test```

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**
```
@inproceedings{espana-bonet:2023,
    title = "Multilingual Coarse Political Stance Classification of Media. The Editorial Line of a {C}hat{GPT} and Bard Newspaper",
    author = "Espa{\~n}a-Bonet, Cristina",
    editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-emnlp.787",
    doi = "10.18653/v1/2023.findings-emnlp.787",
    pages = "11757--11777"
   }
```

**APA:**

España-Bonet, Cristina. (2023, December). Multilingual Coarse Political Stance Classification of Media. The Editorial Line of a ChatGPT and Bard Newspaper. In Findings of the Association for Computational Linguistics: EMNLP 2023 (pp. 11757-11777).