crazyjeannot
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
-
datasets:
|
3 |
-
|
|
|
|
|
4 |
library_name: sentence-transformers
|
5 |
pipeline_tag: sentence-similarity
|
6 |
tags:
|
@@ -8,35 +10,43 @@ tags:
|
|
8 |
- sentence-similarity
|
9 |
- feature-extraction
|
10 |
widget: []
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
16 |
|
17 |
## Model Details
|
18 |
|
19 |
### Model Description
|
20 |
- **Model Type:** Sentence Transformer
|
21 |
-
|
22 |
-
- **Maximum Sequence Length:**
|
23 |
-
- **Output Dimensionality:** 1024
|
24 |
- **Similarity Function:** Cosine Similarity
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
### Model Sources
|
30 |
|
31 |
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
32 |
-
- **Repository:** [
|
33 |
-
- **Hugging Face:** [
|
34 |
|
35 |
### Full Model Architecture
|
36 |
|
37 |
```
|
38 |
SentenceTransformer(
|
39 |
-
(0): Transformer({'max_seq_length':
|
40 |
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
41 |
(2): Normalize()
|
42 |
)
|
@@ -44,71 +54,47 @@ SentenceTransformer(
|
|
44 |
|
45 |
## Usage
|
46 |
|
47 |
-
### Direct Usage (
|
48 |
-
|
49 |
-
First install the Sentence Transformers library:
|
50 |
-
|
51 |
-
```bash
|
52 |
-
pip install -U sentence-transformers
|
53 |
-
```
|
54 |
|
55 |
Then you can load this model and run inference.
|
56 |
```python
|
57 |
-
from
|
58 |
|
59 |
# Download from the 🤗 Hub
|
60 |
-
model =
|
|
|
|
|
|
|
61 |
# Run inference
|
62 |
sentences = [
|
63 |
-
'
|
64 |
-
"
|
65 |
-
'
|
66 |
]
|
67 |
embeddings = model.encode(sentences)
|
68 |
print(embeddings.shape)
|
69 |
# [3, 1024]
|
70 |
-
|
71 |
-
# Get the similarity scores for the embeddings
|
72 |
-
similarities = model.similarity(embeddings, embeddings)
|
73 |
-
print(similarities.shape)
|
74 |
-
# [3, 3]
|
75 |
```
|
76 |
|
77 |
-
|
78 |
-
### Direct Usage (Transformers)
|
79 |
-
|
80 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
81 |
-
|
82 |
-
</details>
|
83 |
-
-->
|
84 |
-
|
85 |
-
<!--
|
86 |
-
### Downstream Usage (Sentence Transformers)
|
87 |
-
|
88 |
-
You can finetune this model on your own dataset.
|
89 |
-
|
90 |
-
<details><summary>Click to expand</summary>
|
91 |
-
|
92 |
-
</details>
|
93 |
-
-->
|
94 |
-
|
95 |
-
<!--
|
96 |
-
### Out-of-Scope Use
|
97 |
-
|
98 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
99 |
-
-->
|
100 |
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
106 |
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
112 |
|
113 |
## Training Details
|
114 |
|
@@ -123,22 +109,17 @@ You can finetune this model on your own dataset.
|
|
123 |
|
124 |
## Citation
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
<!--
|
129 |
-
## Glossary
|
130 |
-
|
131 |
-
*Clearly define terms in order to be accessible across audiences.*
|
132 |
-
-->
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- crazyjeannot/fr_literary_dataset_large
|
4 |
+
language:
|
5 |
+
- fr
|
6 |
library_name: sentence-transformers
|
7 |
pipeline_tag: sentence-similarity
|
8 |
tags:
|
|
|
10 |
- sentence-similarity
|
11 |
- feature-extraction
|
12 |
widget: []
|
13 |
+
license: apache-2.0
|
14 |
+
base_model:
|
15 |
+
- BAAI/bge-m3
|
16 |
---
|
17 |
|
18 |
+
# Literary Encoder
|
19 |
+
|
20 |
+
This is an encoder model finetuned from the FlagOpen/FlagEmbedding family of models.
|
21 |
+
|
22 |
+
The model is specialized for studying french literary fiction with a training corpus based on 40.000 passages from free from rights french literary novels.
|
23 |
+
|
24 |
+
It maps paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
25 |
|
|
|
26 |
|
27 |
## Model Details
|
28 |
|
29 |
### Model Description
|
30 |
- **Model Type:** Sentence Transformer
|
31 |
+
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
|
32 |
+
- **Maximum Sequence Length:** 512 tokens
|
33 |
+
- **Output Dimensionality:** 1024
|
34 |
- **Similarity Function:** Cosine Similarity
|
35 |
+
- **Training Dataset:** [crazyjeannot/fr_literary_dataset_large](https://huggingface.co/datasets/crazyjeannot/fr_literary_dataset_large)
|
36 |
+
- **Language:** French
|
37 |
+
- **License:** cc-by-2.5
|
38 |
|
39 |
### Model Sources
|
40 |
|
41 |
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
42 |
+
- **Repository:** [Flag Embedding on GitHub](https://github.com/FlagOpen/FlagEmbedding)
|
43 |
+
- **Hugging Face:** [BGE dense model on Hugging Face](https://huggingface.co/BAAI/bge-m3)
|
44 |
|
45 |
### Full Model Architecture
|
46 |
|
47 |
```
|
48 |
SentenceTransformer(
|
49 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
50 |
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
51 |
(2): Normalize()
|
52 |
)
|
|
|
54 |
|
55 |
## Usage
|
56 |
|
57 |
+
### Direct Usage (FlagEmbedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
Then you can load this model and run inference.
|
60 |
```python
|
61 |
+
from FlagEmbedding import FlagModel
|
62 |
|
63 |
# Download from the 🤗 Hub
|
64 |
+
model = FlagModel('crazyjeannot/literary_bge_base',
|
65 |
+
query_instruction_for_retrieval="",
|
66 |
+
use_fp16=True)
|
67 |
+
|
68 |
# Run inference
|
69 |
sentences = [
|
70 |
+
'Il y avait, du reste, cette chose assez triste, c’est que si M. de Marsantes, à l’esprit fort ouvert, eût apprécié un fils si différent de lui, Robert de Saint-Loup, parce qu’il était de ceux qui croient que le mérite est attaché à certaines formes de la vie, avait un souvenir affectueux mais un peu méprisant d’un père qui s’était occupé toute sa vie de chasse et de course, avait bâillé à Wagner et raffolé d’Offenbach.',
|
71 |
+
"D’ailleurs, les opinions tranchantes abondent dans un siècle où l’on ne doute de rien, hors de l’existence de Dieu ; mais comme les jugements généraux que l’on porte sur les peuples sont assez souvent démentis par l’expérience, je n’aurai garde de prononcer.",
|
72 |
+
'Il était chargé de remettre l’objet, quel qu’il fût, au commodore, et d’en prendre un reçu, comme preuve que lui et son camarade s’étaient acquittés de leur commission.',
|
73 |
]
|
74 |
embeddings = model.encode(sentences)
|
75 |
print(embeddings.shape)
|
76 |
# [3, 1024]
|
|
|
|
|
|
|
|
|
|
|
77 |
```
|
78 |
|
79 |
+
### SentenceTransformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
```python
|
82 |
+
from sentence_transformers import SentenceTransformer
|
83 |
|
84 |
+
# Download from the 🤗 Hub
|
85 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
86 |
|
87 |
+
# Run inference
|
88 |
+
sentences = [
|
89 |
+
'Il y avait, du reste, cette chose assez triste, c’est que si M. de Marsantes, à l’esprit fort ouvert, eût apprécié un fils si différent de lui, Robert de Saint-Loup, parce qu’il était de ceux qui croient que le mérite est attaché à certaines formes de la vie, avait un souvenir affectueux mais un peu méprisant d’un père qui s’était occupé toute sa vie de chasse et de course, avait bâillé à Wagner et raffolé d’Offenbach.',
|
90 |
+
"D’ailleurs, les opinions tranchantes abondent dans un siècle où l’on ne doute de rien, hors de l’existence de Dieu ; mais comme les jugements généraux que l’on porte sur les peuples sont assez souvent démentis par l’expérience, je n’aurai garde de prononcer.",
|
91 |
+
'Il était chargé de remettre l’objet, quel qu’il fût, au commodore, et d’en prendre un reçu, comme preuve que lui et son camarade s’étaient acquittés de leur commission.',
|
92 |
+
]
|
93 |
|
94 |
+
embeddings = model.encode(sentences)
|
95 |
+
print(embeddings.shape)
|
96 |
+
# [3, 1024]
|
97 |
+
```
|
98 |
|
99 |
## Training Details
|
100 |
|
|
|
109 |
|
110 |
## Citation
|
111 |
|
112 |
+
If you find this repository useful, please consider giving a like and citation
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
```
|
115 |
+
@inproceedings{barre_latent_2024,
|
116 |
+
title={Latent {Structures} of {Intertextuality} in {French} {Fiction}},
|
117 |
+
author={Barré, Jean},
|
118 |
+
address = {Aarhus, Denmark},
|
119 |
+
series = {{CEUR} {Workshop} {Proceedings}},
|
120 |
+
booktitle = {Proceedings of the {Conference} on {Computational} {Humanities} {Research} CHR2024},
|
121 |
+
publisher = {CEUR},
|
122 |
+
editor = {Haverals, Wouter and Koolen, Marijn and Thompson, Laure},
|
123 |
+
year = {2024},
|
124 |
+
}
|
125 |
+
```
|