File size: 5,503 Bytes
97fee74
 
 
 
 
 
 
 
 
 
 
 
44ae05b
97fee74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44ae05b
97fee74
 
 
 
 
 
 
 
 
44ae05b
97fee74
44ae05b
 
97fee74
 
44ae05b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97fee74
44ae05b
 
 
 
 
97fee74
44ae05b
 
 
 
 
 
 
 
 
 
97fee74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: mit
tags:
- generated_from_trainer
datasets:
- wikiann_sk
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: slovakbert-ner
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: wikiann_sk
      type: wikiann_sk
      args: sk
    metrics:
    - name: Precision
      type: precision
      value: 0.9327115256495669
    - name: Recall
      type: recall
      value: 0.9470124013528749
    - name: F1
      type: f1
      value: 0.9398075632132469
    - name: Accuracy
      type: accuracy
      value: 0.9785228256835333
---

# Named Entity Recognition based on SlovakBERT

This model is a fine-tuned version of [gerulata/slovakbert](https://huggingface.co/gerulata/slovakbert) on the wikiann_sk dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1600
- Precision: 0.9327
- Recall: 0.9470
- F1: 0.9398
- Accuracy: 0.9785

## Intended uses & limitations

```
from transformers import pipeline


ner_pipeline = pipeline(task='ner', model='crabz/slovakbert-ner')
input_sentence = "Minister financií a líder mandátovo najsilnejšieho hnutia OĽaNO Igor Matovič upozorňuje, že následky tretej vlny budú na Slovensku veľmi veľké."
classifications = ner_pipeline(input_sentence)
``` 

with `displaCy`:

```
import spacy
from spacy import displacy


ner_map = {0: '0', 1: 'B-OSOBA', 2: 'I-OSOBA', 3: 'B-ORGANIZÁCIA', 4: 'I-ORGANIZÁCIA', 5: 'B-LOKALITA', 6: 'I-LOKALITA'}

entities = []
for i in range(len(classifications)):
    if classifications[i]['entity'] != 0:
        if ner_map[classifications[i]['entity']][0] == 'B':
            j = i + 1
            while j < len(classifications) and ner_map[classifications[j]['entity']][0] == 'I':
                j += 1
            entities.append((ner_map[classifications[i]['entity']].split('-')[1], classifications[i]['start'],
                             classifications[j - 1]['end']))

nlp = spacy.blank("en")  # it should work with any language

doc = nlp(input_sentence)

ents = []
for ee in entities:
    ents.append(doc.char_span(ee[1], ee[2], ee[0]))

doc.ents = ents

options = {"ents": ["OSOBA", "ORGANIZÁCIA", "LOKALITA"],
           "colors": {"OSOBA": "lightblue", "ORGANIZÁCIA": "lightcoral", "LOKALITA": "lightgreen"}}
displacy_html = displacy.render(doc, style="ent", options=options)

```

<div class="entities" style="line-height: 2.5; direction: ltr">Minister financií a líder mandátovo najsilnejšieho hnutia
<mark class="entity" style="background: lightcoral; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
    OĽaNO
    <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORGANIZÁCIA</span>
</mark>

<mark class="entity" style="background: lightblue; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
    Igor Matovič
    <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">OSOBA</span>
</mark>
 upozorňuje, že následky tretej vlny budú na
<mark class="entity" style="background: lightgreen; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
    Slovensku
    <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOKALITA</span>
</mark>
 veľmi veľké.</div>

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2342        | 1.0   | 625  | 0.1233          | 0.8891    | 0.9076 | 0.8982 | 0.9667   |
| 0.1114        | 2.0   | 1250 | 0.1079          | 0.9118    | 0.9269 | 0.9193 | 0.9725   |
| 0.0817        | 3.0   | 1875 | 0.1093          | 0.9173    | 0.9315 | 0.9243 | 0.9747   |
| 0.0438        | 4.0   | 2500 | 0.1076          | 0.9188    | 0.9353 | 0.9270 | 0.9743   |
| 0.028         | 5.0   | 3125 | 0.1230          | 0.9143    | 0.9387 | 0.9264 | 0.9744   |
| 0.0256        | 6.0   | 3750 | 0.1204          | 0.9246    | 0.9423 | 0.9334 | 0.9765   |
| 0.018         | 7.0   | 4375 | 0.1332          | 0.9292    | 0.9416 | 0.9353 | 0.9770   |
| 0.0107        | 8.0   | 5000 | 0.1339          | 0.9280    | 0.9427 | 0.9353 | 0.9769   |
| 0.0079        | 9.0   | 5625 | 0.1368          | 0.9326    | 0.9442 | 0.9383 | 0.9785   |
| 0.0065        | 10.0  | 6250 | 0.1490          | 0.9284    | 0.9445 | 0.9364 | 0.9772   |
| 0.0061        | 11.0  | 6875 | 0.1566          | 0.9328    | 0.9433 | 0.9380 | 0.9778   |
| 0.0031        | 12.0  | 7500 | 0.1555          | 0.9339    | 0.9473 | 0.9406 | 0.9787   |
| 0.0024        | 13.0  | 8125 | 0.1548          | 0.9349    | 0.9462 | 0.9405 | 0.9787   |
| 0.0015        | 14.0  | 8750 | 0.1562          | 0.9330    | 0.9469 | 0.9399 | 0.9788   |
| 0.0013        | 15.0  | 9375 | 0.1600          | 0.9327    | 0.9470 | 0.9398 | 0.9785   |


### Framework versions

- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu113
- Datasets 1.15.1
- Tokenizers 0.10.3