File size: 5,503 Bytes
97fee74 44ae05b 97fee74 44ae05b 97fee74 44ae05b 97fee74 44ae05b 97fee74 44ae05b 97fee74 44ae05b 97fee74 44ae05b 97fee74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- wikiann_sk
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: slovakbert-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann_sk
type: wikiann_sk
args: sk
metrics:
- name: Precision
type: precision
value: 0.9327115256495669
- name: Recall
type: recall
value: 0.9470124013528749
- name: F1
type: f1
value: 0.9398075632132469
- name: Accuracy
type: accuracy
value: 0.9785228256835333
---
# Named Entity Recognition based on SlovakBERT
This model is a fine-tuned version of [gerulata/slovakbert](https://huggingface.co/gerulata/slovakbert) on the wikiann_sk dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1600
- Precision: 0.9327
- Recall: 0.9470
- F1: 0.9398
- Accuracy: 0.9785
## Intended uses & limitations
```
from transformers import pipeline
ner_pipeline = pipeline(task='ner', model='crabz/slovakbert-ner')
input_sentence = "Minister financií a líder mandátovo najsilnejšieho hnutia OĽaNO Igor Matovič upozorňuje, že následky tretej vlny budú na Slovensku veľmi veľké."
classifications = ner_pipeline(input_sentence)
```
with `displaCy`:
```
import spacy
from spacy import displacy
ner_map = {0: '0', 1: 'B-OSOBA', 2: 'I-OSOBA', 3: 'B-ORGANIZÁCIA', 4: 'I-ORGANIZÁCIA', 5: 'B-LOKALITA', 6: 'I-LOKALITA'}
entities = []
for i in range(len(classifications)):
if classifications[i]['entity'] != 0:
if ner_map[classifications[i]['entity']][0] == 'B':
j = i + 1
while j < len(classifications) and ner_map[classifications[j]['entity']][0] == 'I':
j += 1
entities.append((ner_map[classifications[i]['entity']].split('-')[1], classifications[i]['start'],
classifications[j - 1]['end']))
nlp = spacy.blank("en") # it should work with any language
doc = nlp(input_sentence)
ents = []
for ee in entities:
ents.append(doc.char_span(ee[1], ee[2], ee[0]))
doc.ents = ents
options = {"ents": ["OSOBA", "ORGANIZÁCIA", "LOKALITA"],
"colors": {"OSOBA": "lightblue", "ORGANIZÁCIA": "lightcoral", "LOKALITA": "lightgreen"}}
displacy_html = displacy.render(doc, style="ent", options=options)
```
<div class="entities" style="line-height: 2.5; direction: ltr">Minister financií a líder mandátovo najsilnejšieho hnutia
<mark class="entity" style="background: lightcoral; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
OĽaNO
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORGANIZÁCIA</span>
</mark>
<mark class="entity" style="background: lightblue; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Igor Matovič
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">OSOBA</span>
</mark>
upozorňuje, že následky tretej vlny budú na
<mark class="entity" style="background: lightgreen; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;">
Slovensku
<span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOKALITA</span>
</mark>
veľmi veľké.</div>
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2342 | 1.0 | 625 | 0.1233 | 0.8891 | 0.9076 | 0.8982 | 0.9667 |
| 0.1114 | 2.0 | 1250 | 0.1079 | 0.9118 | 0.9269 | 0.9193 | 0.9725 |
| 0.0817 | 3.0 | 1875 | 0.1093 | 0.9173 | 0.9315 | 0.9243 | 0.9747 |
| 0.0438 | 4.0 | 2500 | 0.1076 | 0.9188 | 0.9353 | 0.9270 | 0.9743 |
| 0.028 | 5.0 | 3125 | 0.1230 | 0.9143 | 0.9387 | 0.9264 | 0.9744 |
| 0.0256 | 6.0 | 3750 | 0.1204 | 0.9246 | 0.9423 | 0.9334 | 0.9765 |
| 0.018 | 7.0 | 4375 | 0.1332 | 0.9292 | 0.9416 | 0.9353 | 0.9770 |
| 0.0107 | 8.0 | 5000 | 0.1339 | 0.9280 | 0.9427 | 0.9353 | 0.9769 |
| 0.0079 | 9.0 | 5625 | 0.1368 | 0.9326 | 0.9442 | 0.9383 | 0.9785 |
| 0.0065 | 10.0 | 6250 | 0.1490 | 0.9284 | 0.9445 | 0.9364 | 0.9772 |
| 0.0061 | 11.0 | 6875 | 0.1566 | 0.9328 | 0.9433 | 0.9380 | 0.9778 |
| 0.0031 | 12.0 | 7500 | 0.1555 | 0.9339 | 0.9473 | 0.9406 | 0.9787 |
| 0.0024 | 13.0 | 8125 | 0.1548 | 0.9349 | 0.9462 | 0.9405 | 0.9787 |
| 0.0015 | 14.0 | 8750 | 0.1562 | 0.9330 | 0.9469 | 0.9399 | 0.9788 |
| 0.0013 | 15.0 | 9375 | 0.1600 | 0.9327 | 0.9470 | 0.9398 | 0.9785 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu113
- Datasets 1.15.1
- Tokenizers 0.10.3
|